Effect of bilirubin on the membrane potential of rat brain synaptosomes. 1986

F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor

The effect of the neurotoxic pigment bilirubin on the membrane potential of rat brain synaptosomes was studied by using the tetraphenylphosphonium ion (TTP+) technique. Bilirubin induces a rapid depolarization of synaptosomes, as reflected by an efflux of previously accumulated [3H]TTP+. This phenomenon persisted when the membrane potential across either the plasma membrane of the synaptosome or the inner membrane of the entrapped mitochondria was selectively depressed, thus indicating that both components of the synaptosomal membrane potential were affected by bilirubin. Bovine serum albumin, used at a albumin/bilirubin molar ratio of 1:1, had the capacity to completely prevent and reverse the effect of bilirubin. This fact demonstrates that the bilirubin-induced TPP+ release from synaptosomes is a reversible process that requires the presence of bilirubin interacting with the synaptosomal membranes. These results, together with the inhibition by bilirubin of [3H]TPP+ and [2-14C]acetate uptake by synaptosomal plasma membrane vesicles isolated from rat brain, suggest that bilirubin depresses the membrane potential across the synaptosomal plasma membrane by a mechanism involving alterations in ion permeability. This effect could be of relevance in the pathogenesis of bilirubin encephalopathy.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009861 Onium Compounds Ions with the suffix -onium, indicating cations with coordination number 4 of the type RxA+ which are analogous to QUATERNARY AMMONIUM COMPOUNDS (H4N+). Ions include phosphonium R4P+, oxonium R3O+, sulfonium R3S+, chloronium R2Cl+ Compounds, Onium
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane

Related Publications

F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor
January 1997, Biofizika,
F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor
July 1990, Biochimica et biophysica acta,
F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor
June 1980, Bollettino della Societa italiana di biologia sperimentale,
F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor
May 1980, Journal of neurochemistry,
F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor
December 1979, Biochemical pharmacology,
F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor
June 1984, Journal of neurochemistry,
F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor
December 1988, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor
August 1989, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
F Mayor, and J Díez-Guerra, and F Valdivieso, and F Mayor
April 1984, Biochimica et biophysica acta,
Copied contents to your clipboard!