Estrogen dependent induction of low affinity binding sites in the nuclear fraction of rat uterus. 1986

R De Hertogh, and E Ekka, and I Vanderheyden

Type II estradiol binding sites characterized by lower affinity and higher capacity than type I receptor sites have been described in rat uterine nuclei. These sites appeared to be dependent on estrogen stimulation. Reducing agents prevented estradiol binding to these sites. In the present study, the situation prevailing in adult rats (Ad) was studied and compared to ovariectomized (Ox) and ovariectomized estrogen prestimulated rats (OxPS). Nuclear precipitate from Ad, Ox and OxPS rats were incubated with tritiated estradiol (E2(3)H) in the presence and in the absence of mercaptoethanol as reducing agent. In the presence of mercaptoethanol, saturation was attained at E2(3)H concentrations above 16 nM. In the absence of reducing agents, a secondary binding was observed in Ad and OxPS which was not saturated at E2(3)H levels up to 80 nM. Non-specific binding obtained with paired aliquots containing 100-fold excess of DES as competitor was not linear but showed a saturation profile, distorting the saturation curve of the specific sites, obtained by subtracting non-specific from total E2(3)H binding. Increasing DES concentrations up to 10,000 nM did not allow to reach complete exchange with E3(3)H ligand bound to specific sites, preventing measurement of binding sites concentration. Incubation of nuclear fractions with increasing concentrations of E2(3)H (up to 6,000 nM) gave a saturation curve with a linear kinetics above 1-2,000 nM, which represented saturation concentration of the specific sites. From this, non-specific and specific moieties could be estimated. Binding capacity of specific sites was of the order of 50-80 pmol uterus. Half saturation was attained between 300 and 600 nM E2(3)H, which approximated the Kdiss of these sites, at variance with the Kdiss of 15-30 nM originally reported for type II binding sites. In conclusion, these results show that secondary binding sites were present in uterine nuclei of Ad and OxPS rats. Binding capacity was about 30-fold higher than that of type I sites. Affinity was however very low, and casts some doubt on the role of these sites as active estradiol binders in physiological situations. Their increase under the influence of estrogen may however be related to some as yet undetermined role.

UI MeSH Term Description Entries
D008623 Mercaptoethanol A water-soluble thiol derived from hydrogen sulfide and ethanol. It is used as a reducing agent for disulfide bonds and to protect sulfhydryl groups from oxidation. 2-ME,2-Mercaptoethanol,2 Mercaptoethanol
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004054 Diethylstilbestrol A synthetic nonsteroidal estrogen used in the treatment of menopausal and postmenopausal disorders. It was also used formerly as a growth promoter in animals. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), diethylstilbestrol has been listed as a known carcinogen. (Merck, 11th ed) Stilbestrol,Agostilben,Apstil,Diethylstilbestrol, (Z)-Isomer,Diethylstilbestrol, Disodium Salt,Distilbène,Stilbene Estrogen,Tampovagan,Estrogen, Stilbene
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005260 Female Females

Related Publications

R De Hertogh, and E Ekka, and I Vanderheyden
June 1982, Biochemical and biophysical research communications,
R De Hertogh, and E Ekka, and I Vanderheyden
January 1989, Journal of steroid biochemistry,
R De Hertogh, and E Ekka, and I Vanderheyden
March 1969, The Journal of biological chemistry,
R De Hertogh, and E Ekka, and I Vanderheyden
November 1978, The Journal of biological chemistry,
R De Hertogh, and E Ekka, and I Vanderheyden
August 1990, Journal of steroid biochemistry,
R De Hertogh, and E Ekka, and I Vanderheyden
September 1980, Endocrinologia experimentalis,
R De Hertogh, and E Ekka, and I Vanderheyden
November 1989, Journal of steroid biochemistry,
R De Hertogh, and E Ekka, and I Vanderheyden
December 1986, European journal of pharmacology,
R De Hertogh, and E Ekka, and I Vanderheyden
July 1988, Journal of steroid biochemistry,
R De Hertogh, and E Ekka, and I Vanderheyden
February 1991, Steroids,
Copied contents to your clipboard!