Fumarase deficiency: a new cause of mitochondrial encephalomyopathy. 1986

A B Zinn, and D S Kerr, and C L Hoppel

We observed a deficiency of both the mitochondrial and cytosolic forms of fumarase in a male infant with mitochondrial encephalomyopathy who presented at one month of age with failure to thrive, developmental delay, hypotonia, cerebral atrophy, lactic and pyruvic acidemia, and fumaric aciduria. The patient died at eight months of age. Isolated skeletal-muscle mitochondria showed selective defects in the oxidation of glutamate (31 ng atoms of oxygen consumed per minute per milligram of mitochondrial protein, as compared with 94 +/- 19 [mean +/- SD] in five controls) and of succinate (18 vs. 145 +/- 18 ng atoms of oxygen per minute per milligram of protein), whereas isolated liver mitochondria oxidized these and other substrates normally. Fumarase activity was virtually absent in both liver mitochondria (53 vs. 2878 +/- 248 nmol per minute per milligram of protein [5 controls]) and skeletal-muscle mitochondria (23 vs. 1997 +/- 717 nmol per minute per milligram [12 controls]). Seventeen other mitochondrial enzymes had normal activity in both liver and muscle mitochondrial extracts. Fumarase activity was also significantly reduced in homogenates of liver tissue (less than 1 vs. 90 +/- 25 mumol per minute per gram of wet weight [five controls]) and skeletal muscle (less than 1 vs. 21 +/- 4 mumol per minute per gram [five controls]), indicating a deficiency of both mitochondrial and cytosolic fumarases. Organ differences in intramitochondrial accumulation of fumarate may have accounted for the selective oxidative defects observed in the skeletal-muscle mitochondria but not liver mitochondria. All these findings are consistent with a profound combined fumarase deficiency.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009135 Muscular Diseases Acquired, familial, and congenital disorders of SKELETAL MUSCLE and SMOOTH MUSCLE. Muscle Disorders,Myopathies,Myopathic Conditions,Muscle Disorder,Muscular Disease,Myopathic Condition,Myopathy
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions

Related Publications

A B Zinn, and D S Kerr, and C L Hoppel
May 1997, Neurology,
A B Zinn, and D S Kerr, and C L Hoppel
March 2018, American journal of human genetics,
A B Zinn, and D S Kerr, and C L Hoppel
October 1995, The Annals of otology, rhinology, and laryngology,
A B Zinn, and D S Kerr, and C L Hoppel
September 2013, American journal of human genetics,
A B Zinn, and D S Kerr, and C L Hoppel
August 2019, Human molecular genetics,
A B Zinn, and D S Kerr, and C L Hoppel
April 2019, Molecular genetics & genomic medicine,
A B Zinn, and D S Kerr, and C L Hoppel
January 1987, Neurology,
A B Zinn, and D S Kerr, and C L Hoppel
July 1987, Archives of neurology,
A B Zinn, and D S Kerr, and C L Hoppel
April 1989, Proceedings of the National Academy of Sciences of the United States of America,
A B Zinn, and D S Kerr, and C L Hoppel
January 1988, Journal of inherited metabolic disease,
Copied contents to your clipboard!