Nuclear and mitochondrial DNA synthesis and energy metabolism in primary rat glial cell cultures. 1986

R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida

DNA synthesis in nuclei and mitochondria purified from serum-supplemented rat glial cell cultures at different days after plating was studied. Furthermore in mitochondria, some enzymatic activities related to energy transduction (citrate synthase, malate dehydrogenase, total NADH-cytochrome c reductase, cytochrome oxidase and glutamate dehydrogenase) were measured. For DNA labeling [methyl-3H]thymidine was added to the culture medium at different days after plating. During the culture times studied the specific activity of total, nuclear, and mitochondrial DNA decreased from 8 days in vitro (DIV) to 21 DIV and increased at 30 DIV. The specific activity of nuclear DNA was always higher than that of mitochondrial DNA. The specific activity of the above mentioned mitochondrial enzymes increased from 8 DIV up to 21 DIV and decreased at 30 DIV, suggesting a relationship between the energy metabolism and the differentiation of glial cells in culture.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013936 Thymidine A nucleoside in which THYMINE is linked to DEOXYRIBOSE. 2'-Deoxythymidine,Deoxythymidine,2' Deoxythymidine

Related Publications

R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
October 1983, Research communications in chemical pathology and pharmacology,
R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
August 1980, Neurochemical research,
R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
January 1982, Progress in brain research,
R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
August 1987, Journal of neurochemistry,
R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
February 1970, Archives internationales de physiologie et de biochimie,
R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
January 1974, Biochimie,
R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
January 2012, Biochemical and biophysical research communications,
R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
June 1977, Cancer research,
R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
July 1987, Brain research,
R Avola, and I Serra, and D Curti, and B Lombardo, and M Renis, and D F Condorelli, and A M Giuffrida
September 1989, Journal of neurochemistry,
Copied contents to your clipboard!