Control of hepatic glucose output by glucagon and insulin in the intact dog. 1978

A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park

The regulation of hepatic glucose production by glucagon and insulin has been studied in the intact dog. An attempt has been made to evaluate the role of basal physiological concentrations of the hormones in the regulation of glycogenolysis and gluconeogenesis. Somatostatin was infused continuously into postabsorptive dogs to inhibit the secretion of both glucagon and insulin. Either or both hormones were then replaced intraportally by continuous infusion as desired. The main observations were as follows. (1) When both hormones were simultaneously replaced for periods up to 4.5h, plasma insulin and glucagon concentrations, total glucose output (glycogenolysis plus gluconeogenesis), glucose utilization and the plasma glucose concentration closely matched the same parameters in 0.9% NaCl-infused controls. (2) When glucagon alone was infused, thereby creating a selective insulin deficiency, glucose output (primarily glycogenolysis) rapidly increased by as much as threefold. Glycogenolytic glucose production then fell off progressively and returned to the control value within 4h. The gluconeogenic conversion of [14C]alanine and [14C]lactate into [14C]glucose was stimulated markedly and increased progressively throughout the test period. Glucagon therefore converted the liver from an organ largely dependent on glycogenolysis for glucose production to one heavily dependent on gluconeogenesis. The potent inhibitory effect of basal insulin on postabsorptive glucose output was also clearly apparent. (3) When insulin alone was infused, thereby creating a selective glucagon deficiency, glucose output (glycogenolysis) fell abruptly by about 30% and remained decreased. Gluconeogenesis also decreased (20%) after the selective removal of both insulin and glucagon, but it only remained suppressed for 1h. The low glucose output led to a modest fall in the blood glucose concentration. Thus glucagon plays an important role in maintaining basal glucose production. (4) When insulin was infused and the plasma glucose was kept at its control concentration by infusion of glucose in similar experiments to the above, the hepatic output of glucose fell by as much as 75%. This demonstrates the presence of a glucagon-independent metabolic reflex triggered by a low plasma glucose concentration, the purpose of which is to maintain glucose output at a rate capable of preventing castastrophic hypoglycaemia.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008112 Liver Glycogen Glycogen stored in the liver. (Dorland, 28th ed) Hepatic Glycogen,Glycogen, Hepatic,Glycogen, Liver
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
February 1976, Diabetes,
A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
February 1979, The American journal of physiology,
A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
August 1981, Endocrinology,
A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
January 1972, Advances in cyclic nucleotide research,
A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
August 1963, Archives internationales de pharmacodynamie et de therapie,
A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
March 1978, Endocrinology,
A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
June 1983, Metabolism: clinical and experimental,
A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
April 2003, American journal of physiology. Endocrinology and metabolism,
A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
February 1987, The American journal of physiology,
A D Cherrington, and J L Chiasson, and J E Liljenquist, and W W Lacy, and C R Park
April 1982, The Journal of biological chemistry,
Copied contents to your clipboard!