| D004938 |
Esophageal Neoplasms |
Tumors or cancer of the ESOPHAGUS. |
Cancer of Esophagus,Esophageal Cancer,Cancer of the Esophagus,Esophagus Cancer,Esophagus Neoplasm,Neoplasms, Esophageal,Cancer, Esophageal,Cancer, Esophagus,Cancers, Esophageal,Cancers, Esophagus,Esophageal Cancers,Esophageal Neoplasm,Esophagus Cancers,Esophagus Neoplasms,Neoplasm, Esophageal,Neoplasm, Esophagus,Neoplasms, Esophagus |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D015153 |
Blotting, Western |
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. |
Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings |
|
| D042461 |
Vascular Endothelial Growth Factor A |
The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced. |
Vascular Endothelial Growth Factor,Vascular Endothelial Growth Factor-A,GD-VEGF,Glioma-Derived Vascular Endothelial Cell Growth Factor,VEGF,VEGF-A,Vascular Permeability Factor,Vasculotropin,Glioma Derived Vascular Endothelial Cell Growth Factor,Permeability Factor, Vascular |
|
| D062085 |
RNA, Long Noncoding |
A class of untranslated RNA molecules that are typically greater than 200 nucleotides in length and do not code for proteins. Members of this class have been found to play roles in transcriptional regulation, post-transcriptional processing, CHROMATIN REMODELING, and in the epigenetic control of chromatin. |
LincRNA,RNA, Long Untranslated,LINC RNA,LincRNAs,Long Intergenic Non-Protein Coding RNA,Long Non-Coding RNA,Long Non-Protein-Coding RNA,Long Noncoding RNA,Long ncRNA,Long ncRNAs,RNA, Long Non-Translated,lncRNA,Long Intergenic Non Protein Coding RNA,Long Non Coding RNA,Long Non Protein Coding RNA,Long Non-Translated RNA,Long Untranslated RNA,Non-Coding RNA, Long,Non-Protein-Coding RNA, Long,Non-Translated RNA, Long,Noncoding RNA, Long,RNA, Long Non Translated,RNA, Long Non-Coding,RNA, Long Non-Protein-Coding,Untranslated RNA, Long,ncRNA, Long,ncRNAs, Long |
|
| D020687 |
cdc25 Phosphatases |
A subclass of dual specificity phosphatases that play a role in the progression of the CELL CYCLE. They dephosphorylate and activate CYCLIN-DEPENDENT KINASES. |
Cell Division Cycle 25B protein,Dual Specificity Phosphatase Cdc25A,Dual Specificity Phosphatase Cdc25B,Dual Specificity Phosphatase Cdc25C,M-Phase Inducer Phosphatase 1,M-Phase Inducer Phosphatase 2,M-Phase Inducer Phosphatase 3,cdc25 Phosphatase,cdc25A Phosphatase,cdc25B Phosphatase,cdc25C Phosphatase,M Phase Inducer Phosphatase 1,M Phase Inducer Phosphatase 2,M Phase Inducer Phosphatase 3,Phosphatase, cdc25,Phosphatase, cdc25A,Phosphatase, cdc25B,Phosphatase, cdc25C,Phosphatases, cdc25 |
|
| D035683 |
MicroRNAs |
Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. |
RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA |
|