[Mechanism of functioning of specific sites of interdomain D-E binding of fibrin molecules: interaction of fibrinogen with the N-terminal disulfide node of fibrin]. 1986

V N Rybachuk, and T M Pozdniakova

The intermolecular noncovalent binding of complementary fibrin polymerization sites localized in fibrin domains D and E was investigated in the model system. In this system fibrinogen molecules represent the active D domains and the N-terminal disulphide knot of fibrin (N-DSK) represents the active E domain. Quantitative definition of insoluble fibrinogen and N-DSK copolymer and light scattering data of their mixtures before the appearance of visible precipitate show that complexing of these structures decreases with an increase of the temperature and ionic strength. The character of this dependence permits certain conclusions to be made on the functioning mechanism for two types of the D-E binding sites. These conclusions are based on an idea of their different affinity. The interdomain binding is primarily realized by D1-E1 sites which are characterized by a high affinity and work mainly on the basis of electrostatic forces. This binding directs the D2-E2 binding which is characterized by lower affinity and which determines the final degree of fibrinogen and N-DSK complexing. These sites function mainly by the H-binding.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D005337 Fibrin A protein derived from FIBRINOGEN in the presence of THROMBIN, which forms part of the blood clot. Antithrombin I
D005338 Fibrin Fibrinogen Degradation Products Soluble protein fragments formed by the proteolytic action of plasmin on fibrin or fibrinogen. FDP and their complexes profoundly impair the hemostatic process and are a major cause of hemorrhage in intravascular coagulation and fibrinolysis. Antithrombin VI,Fibrin Degradation Product,Fibrin Degradation Products,Fibrin Fibrinogen Split Products,Degradation Product, Fibrin,Degradation Products, Fibrin,Product, Fibrin Degradation
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

V N Rybachuk, and T M Pozdniakova
January 1996, Ukrainskii biokhimicheskii zhurnal (1978),
V N Rybachuk, and T M Pozdniakova
January 1991, Ukrainskii biokhimicheskii zhurnal (1978),
V N Rybachuk, and T M Pozdniakova
June 1989, Cell,
V N Rybachuk, and T M Pozdniakova
October 2012, Biochemical and biophysical research communications,
V N Rybachuk, and T M Pozdniakova
February 1992, FEBS letters,
V N Rybachuk, and T M Pozdniakova
January 1991, Biomedical science,
Copied contents to your clipboard!