Stimulus contrast modulates burst activity in the lateral geniculate nucleus. 2023

Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
Center for Neuroscience, University of California Davis, 95618, USA.

Burst activity is a ubiquitous feature of thalamic neurons and is well documented for visual neurons in the lateral geniculate nucleus (LGN). Although bursts are often associated with states of drowsiness, they are also known to convey visual information to cortex and are particularly effective in evoking cortical responses. The occurrence of thalamic bursts depends on (1) the inactivation gate of T-type Ca2+ channels (T-channels), which become de-inactivated following periods of increased membrane hyperpolarization, and (2) the opening of the T-channel activation gate, which has voltage-threshold and rate-of-change (δv/δt) requirements. Given the time/voltage relationship for the generation of Ca2+ potentials that underlie burst events, it is reasonable to predict that geniculate bursts are influenced by the luminance contrast of drifting grating stimuli, with the null phase of higher contrast stimuli evoking greater hyperpolarization followed by a larger dv/dt than the null phase of lower contrast stimuli. To determine the relationship between stimulus contrast and burst activity, we recorded the spiking activity of cat LGN neurons while presenting drifting sine-wave gratings that varied in luminance contrast. Results show that burst rate, reliability, and timing precision are significantly greater with higher contrast stimuli compared with lower contrast stimuli. Additional analysis from simultaneous recordings of synaptically connected retinal ganglion cells and LGN neurons further reveals the time/voltage dynamics underlying burst activity. Together, these results support the hypothesis that stimulus contrast and the biophysical properties underlying the state of T-type Ca2+ channels interact to influence burst activity, presumably to facilitate thalamocortical communication and stimulus detection.

UI MeSH Term Description Entries

Related Publications

Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
July 1992, Journal of neurophysiology,
Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
June 2021, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
November 2002, Nature neuroscience,
Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
May 1977, Sensory processes,
Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
April 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
January 2009, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
January 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
January 2018, Nature communications,
Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
May 2022, The Journal of comparative neurology,
Alyssa N Sanchez, and Henry J Alitto, and Daniel L Rathbun, and Tucker G Fisher, and W Martin Usrey
August 2001, Current biology : CB,
Copied contents to your clipboard!