Conduction velocity, size and distribution of optic nerve axons in the turtle, Pseudemys scripta elegans. 1986

P B Woodbury, and P S Ulinski

Electrophysiological and morphological techniques have been used to characterize optic nerve axons in the red-eared turtle. Three distinct groups of axons are identified on the basis of conduction velocity and axon diameter. The first group (T1) is a small population of axons with large diameters (2.8-4.5 microns) and mean conduction velocities of 13 m/sec. The second group (T2) is a large population of axons with medium diameters (0.4-2.8 microns) and mean conduction velocities of 3 m/sec. The third group (T3) is a medium sized population of small diameter (0.2-0.6 micron), mostly unmyelinated axons with mean conduction velocities of 1 m/sec. There is a significant regional variation in the size, density and myelination of axons in the optic nerve. Large axons are found dorsally and ventrally, while smaller axons and the majority of unmyelinated fibers are found along a dorsotemporal to ventronasal axis through the nerve. Fink-Heimer techniques were used to trace the trajectories of axons of different sizes from the retina to the brain. Large diameter axons can be traced along the dorsal and ventral portions of the optic tract, with a dorsal group leaving the tract in the pretectum and a ventral group entering the basal optic tract. These observations suggest that the distribution of axons within the optic nerve reflects in part the distribution of ganglion cell somata in the retina. However, there is also some segregation of axons of different sizes according to their various central targets.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D014426 Turtles Any reptile including tortoises, fresh water, and marine species of the order Testudines with a body encased in a bony or cartilaginous shell consisting of a top (carapace) and a bottom (plastron) derived from the ribs. Sea Turtles,Terrapins,Tortoises,Sea Turtle,Terrapin,Tortoise,Turtle,Turtle, Sea,Turtles, Sea
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

P B Woodbury, and P S Ulinski
April 1998, The Journal of comparative neurology,
P B Woodbury, and P S Ulinski
January 1987, Vision research,
P B Woodbury, and P S Ulinski
January 2005, Neuroscience letters,
P B Woodbury, and P S Ulinski
January 1983, Cell and tissue research,
P B Woodbury, and P S Ulinski
December 1969, Science (New York, N.Y.),
P B Woodbury, and P S Ulinski
January 2005, Brain, behavior and evolution,
P B Woodbury, and P S Ulinski
October 1980, Respiration physiology,
P B Woodbury, and P S Ulinski
February 1994, Journal of veterinary pharmacology and therapeutics,
P B Woodbury, and P S Ulinski
February 1994, Journal of veterinary pharmacology and therapeutics,
Copied contents to your clipboard!