Impact of the cAMP efflux and extracellular cAMP-adenosine pathway on airway smooth muscle relaxation induced by formoterol and phosphodiesterase inhibitors. 2023

Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil.

β2-adrenoceptors agonists and phosphodiesterase (PDE) inhibitors are effective bronchodilators, due to their ability to increase intracellular cyclic AMP (cAMP) levels and induce airway smooth muscle (ASM) relaxation. We have shown that increment of intracellular cAMP induced by β2-adrenoceptors agonist fenoterol is followed by efflux of cAMP, which is converted by ecto-PDE and ecto-5'-nucleotidases (ecto-5'NT) to adenosine, leading to ASM contraction. Here we evaluate whether other classical bronchodilators used to treat asthma and chronic obstructive pulmonary disease (COPD) could induce cAMP efflux and, as consequence, influence the ASM contractility. Our results showed that β2-adrenoceptor agonists formoterol and PDE inhibitors IBMX, aminophylline and roflumilast induced cAMP efflux and a concentration-dependent relaxation of rat trachea precontracted with carbachol. Pretreatment of tracheas with MK-571 (MRP transporter inhibitor), AMP-CP (ecto-5'NT inhibitor) or CGS-15943 (nonselective adenosine receptor antagonist) potentiated the relaxation induced by β2-adrenoceptor agonists but did not change the relaxation induced by PDE inhibitors. These data showed that all bronchodilators tested were able to induce cAMP efflux. However, only β2-adrenoceptor-induced relaxation of tracheal smooth muscle was affected by cAMP efflux and extracellular cAMP-adenosine pathway.

UI MeSH Term Description Entries
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D010726 Phosphodiesterase Inhibitors Compounds which inhibit or antagonize the biosynthesis or actions of phosphodiesterases. Phosphodiesterase Antagonists,Phosphodiesterase Inhibitor,Phosphoric Diester Hydrolase Inhibitors,Antiphosphodiesterases,Inhibitor, Phosphodiesterase
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D001993 Bronchodilator Agents Agents that cause an increase in the expansion of a bronchus or bronchial tubes. Bronchial-Dilating Agents,Bronchodilator,Bronchodilator Agent,Broncholytic Agent,Bronchodilator Effect,Bronchodilator Effects,Bronchodilators,Broncholytic Agents,Broncholytic Effect,Broncholytic Effects,Agent, Bronchodilator,Agent, Broncholytic,Agents, Bronchial-Dilating,Agents, Bronchodilator,Agents, Broncholytic,Bronchial Dilating Agents,Effect, Bronchodilator,Effect, Broncholytic,Effects, Bronchodilator,Effects, Broncholytic
D000068759 Formoterol Fumarate An ADRENERGIC BETA-2 RECEPTOR AGONIST with a prolonged duration of action. It is used to manage ASTHMA and in the treatment of CHRONIC OBSTRUCTIVE PULMONARY DISEASE. 3-Formylamino-4-hydroxy-alpha-(N-1-methyl-2-p-methoxyphenethylaminomethyl)benzyl alcohol.hemifumarate,Arformoterol,BD 40A,Eformoterol,Foradil,Formoterol,Formoterol Fumarate, ((R*,R*)-(+-))-isomer,Formoterol, ((R*,R*)-(+-))-isomer,Oxis
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014132 Trachea The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi. Tracheas

Related Publications

Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
July 2018, The Journal of pharmacology and experimental therapeutics,
Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
March 1978, Biochemical pharmacology,
Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
February 1988, Journal of applied physiology (Bethesda, Md. : 1985),
Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
October 1994, Trends in pharmacological sciences,
Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
January 1985, Life sciences,
Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
November 1987, British journal of pharmacology,
Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
August 1995, Thorax,
Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
January 1981, Lung,
Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
January 2010, Frontiers in bioscience (Landmark edition),
Naiara Ayako Satori, and Enio Setsuo Arakaki Pacini, and Rosely Oliveira Godinho
January 2000, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!