EAAT5 glutamate transporter rapidly binds glutamate with micromolar affinity in mouse rods. 2023

Wallace B Thoreson, and Bhavana Chhunchha
Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, Omaha, NE, USA.

Light responses of rod photoreceptor cells in the retina are encoded by changes in synaptic glutamate release that is in turn shaped by reuptake involving EAAT5 plasma membrane glutamate transporters. Heterologously expressed EAAT5 activates too slowly upon glutamate binding to support significant uptake. We tested EAAT5 activation in mouse rods in vivo by stimulating glutamate transporter anion currents (IA(glu)) with UV flash photolysis of MNI-glutamate, varying flash intensity to vary glutamate levels. Responses to uncaging rose rapidly with time constants of 2-3 ms, similar to IA(glu) events arising from spontaneous release. Spontaneous release events and IA(glu) evoked by weak flashes also declined with similar time constants of 40-50 ms. Stronger flashes evoked responses that decayed more slowly. Time constants were twofold faster at 35°C, suggesting that they reflect transporter kinetics, not diffusion. Selective EAAT1 and EAAT2 inhibitors had no significant effect, suggesting IA(glu) in rods arises solely from EAAT5. We calibrated glutamate levels attained during flash photolysis by expressing a fluorescent glutamate sensor iGluSnFr in cultured epithelial cells. We compared fluorescence at different glutamate concentrations to fluorescence evoked by photolytic uncaging of MNI-glutamate. The relationship between flash intensity and glutamate yielded EC50 values for EAAT5 amplitude, decay time, and rise time of ∼10 μM. Micromolar affinity and rapid activation of EAAT5 in rods show it can rapidly bind synaptic glutamate. However, we also found that EAAT5 currents are saturated by the synchronous release of only a few vesicles, suggesting limited capacity and a role for glial uptake at higher release rates.

UI MeSH Term Description Entries
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D050582 Excitatory Amino Acid Transporter 5 A glutamate plasma membrane transporter protein that is primarily expressed in the RETINA. EAAT-5 Excitatory Amino Acid Transporter,SLC1A7 Transporter,EAAT 5 Excitatory Amino Acid Transporter,Transporter, SLC1A7
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017948 Retinal Rod Photoreceptor Cells Photosensitive afferent neurons located in the peripheral retina, with their density increases radially away from the FOVEA CENTRALIS. Being much more sensitive to light than the RETINAL CONE CELLS, the rod cells are responsible for twilight vision (at scotopic intensities) as well as peripheral vision, but provide no color discrimination. Photoreceptors, Rod,Retinal Rod Cells,Rod Photoreceptors,Rods (Retina),Retinal Rod,Retinal Rod Cell,Retinal Rod Photoreceptor,Retinal Rod Photoreceptors,Rod Photoreceptor Cells,Cell, Retinal Rod,Cell, Rod Photoreceptor,Cells, Retinal Rod,Cells, Rod Photoreceptor,Photoreceptor Cell, Rod,Photoreceptor Cells, Rod,Photoreceptor, Retinal Rod,Photoreceptor, Rod,Photoreceptors, Retinal Rod,Retinal Rods,Rod (Retina),Rod Cell, Retinal,Rod Cells, Retinal,Rod Photoreceptor,Rod Photoreceptor Cell,Rod Photoreceptor, Retinal,Rod Photoreceptors, Retinal,Rod, Retinal,Rods, Retinal
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum
D027322 Amino Acid Transport System X-AG A family of POTASSIUM and SODIUM-dependent acidic amino acid transporters that demonstrate a high affinity for GLUTAMIC ACID and ASPARTIC ACID. Several variants of this system are found in neuronal tissue. Glutamate-Aspartate Transporter,Amino Acid Transport System XAG,GLAST Glutamate-Aspartate Transporters,Glutamate Translocase,Glutamate Transport Glycoprotein,Glutamate Transporter,Amino Acid Transport System X AG,GLAST Glutamate Aspartate Transporters,Glutamate Aspartate Transporter,Glutamate-Aspartate Transporters, GLAST,Transport Glycoprotein, Glutamate,Transporter, Glutamate-Aspartate,Transporters, GLAST Glutamate-Aspartate

Related Publications

Wallace B Thoreson, and Bhavana Chhunchha
January 2021, Frontiers in cellular neuroscience,
Wallace B Thoreson, and Bhavana Chhunchha
October 2014, Vision research,
Wallace B Thoreson, and Bhavana Chhunchha
November 2006, The Journal of physiology,
Wallace B Thoreson, and Bhavana Chhunchha
January 2018, Bioinformatics and biology insights,
Wallace B Thoreson, and Bhavana Chhunchha
September 1995, Gene,
Wallace B Thoreson, and Bhavana Chhunchha
September 2012, Gene,
Wallace B Thoreson, and Bhavana Chhunchha
January 2013, Frontiers in cellular neuroscience,
Wallace B Thoreson, and Bhavana Chhunchha
August 1997, Brain research. Molecular brain research,
Copied contents to your clipboard!