tcRNA as a naturally occurring antisense RNA in eukaryotes. 1986

S M Heywood

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015879 Myosin Subfragments Parts of the myosin molecule resulting from cleavage by proteolytic enzymes (PAPAIN; TRYPSIN; or CHYMOTRYPSIN) at well-localized regions. Study of these isolated fragments helps to delineate the functional roles of different parts of myosin. Two of the most common subfragments are myosin S-1 and myosin S-2. S-1 contains the heads of the heavy chains plus the light chains and S-2 contains part of the double-stranded, alpha-helical, heavy chain tail (myosin rod). Actomyosin Subfragments,Meromyosin Subfragments,Myosin Rod,Myosin S-1,Myosin S-2,ATPase, Actin-S1,Actin S1 ATPase,Actoheavy Meromyosin,Actomyosin Subfragment 1 ATPase,H-Meromyosin,Heavy Meromyosin,Heavy Meromyosin Subfragment-1,Heavy Meromyosin Subfragment-2,Light Meromyosin,Myosin Subfragment-1,Myosin Subfragment-2,ATPase, Actin S1,Actin-S1 ATPase,H Meromyosin,Heavy Meromyosin Subfragment 1,Heavy Meromyosin Subfragment 2,Meromyosin Subfragment-1, Heavy,Meromyosin Subfragment-2, Heavy,Meromyosin, Actoheavy,Meromyosin, Heavy,Meromyosin, Light,Myosin S 1,Myosin S 2,Myosin Subfragment 1,Myosin Subfragment 2,Subfragment-1, Heavy Meromyosin,Subfragment-1, Myosin,Subfragment-2, Heavy Meromyosin,Subfragment-2, Myosin,Subfragments, Actomyosin,Subfragments, Meromyosin,Subfragments, Myosin

Related Publications

S M Heywood
September 1997, Pharmacology & therapeutics,
S M Heywood
July 2009, Current opinion in nephrology and hypertension,
S M Heywood
November 1991, The Journal of biological chemistry,
S M Heywood
January 2007, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Copied contents to your clipboard!