[Melatonin radioimmunoanalysis: evaluation of the pineal function in hyperprolactinemic male rats and controls]. 1986

M A Villanúa, and A I Esquifino, and J A Tresguerres

A sensitive and specific radioimmunoassay for melatonin quantification in rat pineal and biological fluids is described. The assay utilizes a specific antibody and H3-melatonin as tracer. Bound and free fraction were separated by a saturated sulphate ammonium solution. The sensitivity of the method is 9 pg/ml. The intra and interassay variation coefficient were 10.4 and 13.6% respectively. By means of this RIA the content of melatonin in the pineal gland in male rats made hyperprolactinemic on day 30 of life and their respective sham-operated controls has been evaluated. The results showed that the melatonin content measured at 2 a.m. was reduced in the transplanted animals when compared to control group, not only shortly (48 hours) after the transplant operation, but also in the chronic situation; though suggesting that further investigations are necessary to deepen and understand the interrelationships between prolactin and pineal gland and their effect on the hypothalamic-pituitary-gonadal axis.

UI MeSH Term Description Entries
D006966 Hyperprolactinemia Increased levels of PROLACTIN in the BLOOD, which may be associated with AMENORRHEA and GALACTORRHEA. Relatively common etiologies include PROLACTINOMA, medication effect, KIDNEY FAILURE, granulomatous diseases of the PITUITARY GLAND, and disorders which interfere with the hypothalamic inhibition of prolactin release. Ectopic (non-pituitary) production of prolactin may also occur. (From Joynt, Clinical Neurology, 1992, Ch36, pp77-8) Prolactin Hypersecretion Syndrome,Prolactin, Inappropriate Secretion,Hyperprolactinaemia,Inappropriate Prolactin Secretion,Inappropriate Prolactin Secretion Syndrome,Hyperprolactinemias,Hypersecretion Syndrome, Prolactin,Inappropriate Secretion Prolactin,Prolactin Secretion, Inappropriate,Secretion Prolactin, Inappropriate,Secretion, Inappropriate Prolactin,Syndrome, Prolactin Hypersecretion
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D008550 Melatonin A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D006066 Gonads The gamete-producing glands, OVARY or TESTIS. Gonad
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M A Villanúa, and A I Esquifino, and J A Tresguerres
January 1988, Chronobiology international,
M A Villanúa, and A I Esquifino, and J A Tresguerres
January 1975, Hormone research,
M A Villanúa, and A I Esquifino, and J A Tresguerres
January 1984, The Journal of experimental zoology,
M A Villanúa, and A I Esquifino, and J A Tresguerres
April 1987, Life sciences,
M A Villanúa, and A I Esquifino, and J A Tresguerres
January 1981, Journal of neural transmission,
M A Villanúa, and A I Esquifino, and J A Tresguerres
January 1994, Bioelectromagnetics,
M A Villanúa, and A I Esquifino, and J A Tresguerres
July 1970, The Journal of endocrinology,
M A Villanúa, and A I Esquifino, and J A Tresguerres
October 1978, The Journal of endocrinology,
M A Villanúa, and A I Esquifino, and J A Tresguerres
August 1984, Neuroscience letters,
M A Villanúa, and A I Esquifino, and J A Tresguerres
September 1985, Neuroendocrinology,
Copied contents to your clipboard!