Evidence for co-transcription of the RNA polymerase genes rpoBC with a ribosomal protein gene of escherichia coli. 1979

A J Newman, and T G Linn, and R S Hayward

The adjacent genes rpoB and rpoC code for the beta and beta' subunits of RNA polymerase in Escherichia coli, and are cotranscribed in the order given. The nearest known genes to rpoB are rplL and rplA,J,K, which code for ribosomal proteins, and which are transcribed in the same direction as the polymerase genes. It has been suggested that rpoBC may be distal elements of a larger operon including these ribosomal genes. To test this possibility we have cloned a segment of DNA, derived by endoR. HindIII digestion from the rpoBC-transducing bacteriophage lambdarifd18, in the replacement vector NMlambda761. The structure of the lambdarpoBC bacteriophages so produced is such that the inserted DNA can be transcribed from lambda promoters, allowing us to confirm that it carries intact rplL, rpoB, and rpoC genes. We have studied these bacteriophages as lysogens in rec+ and rec bacteria, and by infection of UV-irradiated bacterial strains in which lambda promoters are either repressed or active. The results indicate that the cloned DNA contains at most a very weak promoter for the above genes, in contrast to that present in the larger segment of bacterial DNA carried by lambdarifd18. We have in the same way cloned the adjacent bacterial HindIII-fragment of lambdarifd18 DNA, and have found that it displays vigorous autonomous expression of the tufB, rplA, and rplK genes. We conclude that rpoB and C are obligatorily co-transcribed with rplL, from a promoter located outside the DNA segment cloned in lambdarpoBC. We discuss the evidence for the existence of a regulatory site, rpoU, located between rplL and rpoB.

UI MeSH Term Description Entries
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene

Related Publications

A J Newman, and T G Linn, and R S Hayward
February 1972, Nature,
A J Newman, and T G Linn, and R S Hayward
April 1971, Biochemical and biophysical research communications,
A J Newman, and T G Linn, and R S Hayward
July 1975, Proceedings of the National Academy of Sciences of the United States of America,
A J Newman, and T G Linn, and R S Hayward
May 1979, Molecular & general genetics : MGG,
Copied contents to your clipboard!