Capillary permeability in rat hindquarters as determined by estimations of capillary reflection coefficients. 1986

B Rippe, and B Haraldsson

Osmotic reflection coefficients (sigma) for a variety of solutes ranging from NaCl to albumin were determined in perfused maximally vasodilated rat hindquarters employing the osmotic transient method (Vargas & Johnson 1964). Measurements were performed at high flows and using short tubings with small volumes. Intracapillary solute concentrations of the osmotic transients were measured or estimated for solutes of the size of inulin or smaller. The PS for Cr-EDTA and cyanocobalamine were determined repeatedly in half of the experiments using an on-line modification of the single injection (indicator diffusion) method (Rippe & Stage 1978) and capillary filtration coefficients (CFC or LpS) were followed in all experiments. The capillary osmotic reflection coefficient was determined to 0.05 for NaCl, to 0.08 for sucrose, to 0.39 for inulin, to 0.57 for myoglobin and to 0.87 for albumin. These reflection coefficients were compatible with a 'small pore radius' of approximately 40 A (slit width (w) of approximately 50 A) according to modern hydrodynamic theories for the reflection coefficient and the parallel transcapillary pathway hypothesis. The best fit of the osmotic transient data to current theories for the reflection coefficient occurred if the major portion (86-87%) of the hydraulic conductivity (Lp) was accounted for by this paracellular 'small pore' (slit) pathway and if 3.0-4.1% of Lp could be ascribed to a transcellular pathway (sigma approximately I) while the remaining fraction (10%) of Lp was accounted for by a non-selective paracellular pathway (sigma approximately o); that is, by 'large pores'.

UI MeSH Term Description Entries
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

B Rippe, and B Haraldsson
October 1989, The American journal of physiology,
B Rippe, and B Haraldsson
July 1971, Biochimica et biophysica acta,
B Rippe, and B Haraldsson
April 1980, Acta physiologica Scandinavica,
B Rippe, and B Haraldsson
December 1976, Biochimica et biophysica acta,
B Rippe, and B Haraldsson
January 1980, Archives of oral biology,
B Rippe, and B Haraldsson
July 1981, Microvascular research,
B Rippe, and B Haraldsson
July 1977, Microvascular research,
Copied contents to your clipboard!