Phasic effects of postganglionic vagal stimulation on atrioventricular nodal conduction. 1986

T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price

The effects of postganglionic vagal stimulation (PGVS) on atrioventricular nodal conduction were studied in 15 rabbit atrial-atrioventricular nodal preparations. PGVS was introduced, and sinus cycle length was scanned as independent bursts of subthreshold stimuli were produced in the sinus node and atrioventricular node (AVN). Changes in conduction of atrial impulses to the bundle of His were studied under the following experimental conditions: changes in sinus cycle length resulting from vagal influence on the sinus node, direct vagal stimulation exclusively to the AVN, and during both simultaneous or nonsimultaneous vagal stimulation to sinus node and AVN. The results of the present study showed that the direct effect of PGVS on AVN conduction time at a constant sinus cycle length is phase dependent with maximal prolongation achieved in the first or second beat after introduction of the burst. The interval between the onset of PGVS producing maximal prolongation of conduction time and the following atrial beat was designated the "optimal effective phase." It was shown that the optimal effective phase was a constant parameter for a given preparation and in the present experiments was 321 +/- 16 ms. However, when PGVS was introduced in combination to both nodes while scanning the cycle length, AVN conduction was variable, reflecting both the direct effects of PGVS on the AVN as well as the indirect effects resulting from changes in the sinus cycle length. Notably, it was found that simultaneous PGVS to both the sinus node and AVN usually diminished, whereas appropriate nonsimultaneous PGVS accentuated the typical phasic dependency of AVN conduction time. Additionally, vagally induced prolongation of the sinus cycle length was found to be accompanied by changes in the time of depolarization of the inputs to the AVN, thus influencing AVN conduction and facilitating reentry. These interactions between changes in the sinus cycle length and concomitant changes in the effectiveness of vagal influence on the AVN can be used to explain complexities of AVN conduction during increased vagal activity.

UI MeSH Term Description Entries
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001283 Atrioventricular Node A small nodular mass of specialized muscle fibers located in the interatrial septum near the opening of the coronary sinus. It gives rise to the atrioventricular bundle of the conduction system of the heart. AV Node,A-V Node,Atrio-Ventricular Node,A V Node,A-V Nodes,AV Nodes,Atrio Ventricular Node,Atrio-Ventricular Nodes,Atrioventricular Nodes,Node, A-V,Node, AV,Node, Atrio-Ventricular,Node, Atrioventricular,Nodes, A-V,Nodes, AV,Nodes, Atrio-Ventricular,Nodes, Atrioventricular
D012849 Sinoatrial Node The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE). Sinuatrial Node,Sinus Node,Sino-Atrial Node,Sinu-Atrial Node,Node, Sino-Atrial,Node, Sinoatrial,Node, Sinu-Atrial,Node, Sinuatrial,Node, Sinus,Nodes, Sino-Atrial,Nodes, Sinoatrial,Nodes, Sinu-Atrial,Nodes, Sinuatrial,Nodes, Sinus,Sino Atrial Node,Sino-Atrial Nodes,Sinoatrial Nodes,Sinu Atrial Node,Sinu-Atrial Nodes,Sinuatrial Nodes,Sinus Nodes

Related Publications

T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
September 1988, Canadian journal of physiology and pharmacology,
T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
May 1997, The American journal of physiology,
T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
May 2006, Heart rhythm,
T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
October 1997, The American journal of cardiology,
T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
March 1973, Cardiovascular research,
T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
June 1983, Circulation research,
T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
January 1999, Annals of biomedical engineering,
T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
April 2003, Circulation,
T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
February 1983, The American journal of physiology,
T Mazgalev, and L S Dreifus, and E L Michelson, and A Pelleg, and R Price
June 2018, Cardiac electrophysiology clinics,
Copied contents to your clipboard!