TRIM28 modulates nuclear receptor signaling to regulate uterine function. 2023

Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Estrogen and progesterone, acting through their cognate receptors the estrogen receptor α (ERα) and the progesterone receptor (PR) respectively, regulate uterine biology. Using rapid immunoprecipitation and mass spectrometry (RIME) and co-immunoprecipitation, we identified TRIM28 (Tripartite motif containing 28) as a protein which complexes with ERα and PR in the regulation of uterine function. Impairment of TRIM28 expression results in the inability of the uterus to support early pregnancy through altered PR and ERα action in the uterine epithelium and stroma by suppressing PR and ERα chromatin binding. Furthermore, TRIM28 ablation in PR-expressing uterine cells results in the enrichment of a subset of TRIM28 positive and PR negative pericytes and epithelial cells with progenitor potential. In summary, our study reveals the important roles of TRIM28 in regulating endometrial cell composition and function in women, and also implies its critical functions in other hormone regulated systems.

UI MeSH Term Description Entries
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000076183 Tripartite Motif-Containing Protein 28 A tripartite motif protein consisting of an N-terminal RING finger, two B-box type ZINC FINGERS, and C-terminal PHD domain. It functions as a transcriptional repressor by associating with Kruppel-association box domain (KRAB domain) transcription factors and has E3-SUMO-ligase activity towards itself and also sumoylates INTERFERON REGULATORY FACTOR-7 to reduce its activity as a transcriptional activator. It can also function as a ubiquitin protein ligase towards TUMOR SUPPRESSOR PROTEIN P53. TRIM28 Protein,Tripartite Motif Containing Protein 28
D014599 Uterus The hollow thick-walled muscular organ in the female PELVIS. It consists of the fundus which is the site of EMBRYO IMPLANTATION and FETAL DEVELOPMENT. Beyond the isthmus at the perineal end of fundus, is CERVIX UTERI (the neck) opening into VAGINA. Beyond the isthmi at the upper abdominal end of fundus, are the FALLOPIAN TUBES. Fundus Uteri,Uteri,Uterine Cornua,Uterine Fundus,Uterus Cornua,Womb,Cornua, Uterine,Fundus Uterus,Fundus, Uterine,Uteri, Fundus,Wombs
D047628 Estrogen Receptor alpha One of the ESTROGEN RECEPTORS that has marked affinity for ESTRADIOL. Its expression and function differs from, and in some ways opposes, ESTROGEN RECEPTOR BETA. ERalpha,Estradiol Receptor alpha,Estrogen Receptor 1,Estrogen Receptors alpha,Receptor alpha, Estrogen,Receptor alpha, Estradiol,alpha, Estradiol Receptor

Related Publications

Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
June 2012, Future medicinal chemistry,
Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
April 2011, American journal of physiology. Gastrointestinal and liver physiology,
Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
May 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
March 2021, Journal of neurochemistry,
Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
May 2024, The Plant journal : for cell and molecular biology,
Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
January 2015, PloS one,
Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
April 2023, Life (Basel, Switzerland),
Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
January 2006, Nucleic acids research,
Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
January 2006, Nucleic acids research,
Rong Li, and Tianyuan Wang, and Ryan M Marquardt, and John P Lydon, and San-Pin Wu, and Francesco J DeMayo
March 2007, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!