Phosphatidylinositol-specific phospholipase C of murine lymphocytes. 1986

Y Kamisaka, and S Toyoshima, and T Osawa

Phosphatidylinositol-specific phospholipase C (PI-phospholipase C) was found primarily in the cytosolic fraction of murine splenic lymphocytes. However, small but significant amounts of the activity of the enzyme were detected in the microsome and plasma membrane fractions. Both the cytosolic and membrane-bound phospholipases C specifically hydrolyzed inositol phospholipids, phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. PI-Phospholipase C activity was detected in the cytosolic and microsome fractions from both T-cell-enriched and B-cell-enriched spleen cells. The membrane-bound enzyme was distinguishable from the cytosolic enzyme in the following properties. The cytosolic PI-phospholipase C showed optimal activity at pH 6.0 while the membrane-bound enzyme had two pH optima between pH 5.0 and 7.0. The activity of the cytosolic enzyme was first detected at 1 microM Ca2+, and maximum activity was observed at 100 microM Ca2+, while the membrane-bound PI-phospholipase C required higher Ca2+ concentrations, of millimolar order. The membrane-bound enzyme could hardly be extracted with 1 M NaCl but was extracted with 0.4% cholate.A portion of the membrane-bound PI-phospholipase C activity in the cholate extract was absorbed by concanavalin A-Sepharose and specifically eluted with an alpha-methylmannoside solution. The cytosolic enzyme, which was water soluble, did not bind to concanavalin A-Sepharose. Trypsinization of lymphocytes before subcellular fractionation caused a significant decrease in the PI-phospholipase C activity in the microsome fraction but almost no loss at all of the cytosolic enzyme activity.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D005260 Female Females

Related Publications

Y Kamisaka, and S Toyoshima, and T Osawa
January 1997, Annual review of biochemistry,
Y Kamisaka, and S Toyoshima, and T Osawa
January 1991, Methods in enzymology,
Y Kamisaka, and S Toyoshima, and T Osawa
January 1981, Methods in enzymology,
Y Kamisaka, and S Toyoshima, and T Osawa
August 1993, Biochemistry,
Y Kamisaka, and S Toyoshima, and T Osawa
February 1987, Clinical chemistry,
Y Kamisaka, and S Toyoshima, and T Osawa
September 1987, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
Y Kamisaka, and S Toyoshima, and T Osawa
January 1982, Methods in enzymology,
Y Kamisaka, and S Toyoshima, and T Osawa
November 1988, Nucleic acids research,
Y Kamisaka, and S Toyoshima, and T Osawa
July 1981, The Journal of biological chemistry,
Copied contents to your clipboard!