Incretins and cardiovascular disease: to the heart of type 2 diabetes? 2023

Anna Solini, and Domenico Tricò, and Stefano Del Prato
Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy.

Major cardiovascular outcome trials and real-life observations have proven that glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs), regardless of structural GLP-1 homology, exert clinically relevant cardiovascular protection. GLP-1RAs provide cardioprotective benefits through glycaemic and non-glycaemic effects, including improved insulin secretion and action, body-weight loss, blood-pressure lowering and improved lipid profile, as well as via direct effects on the heart and vasculature. These actions are likely combined with anti-inflammatory and antioxidant properties that translate into robust and consistent reductions in atherothrombotic events, particularly in people with type 2 diabetes and established atherosclerotic CVD. GLP-1RAs may also have an impact on obesity and chronic kidney disease, conditions for which cardiovascular risk-reducing options are limited. The available evidence has prompted professional and medical societies to recommend GLP-1RAs for mitigation of the cardiovascular risk in people with type 2 diabetes. This review summarises the clinical evidence for cardiovascular protection with use of GLP-1RAs and the main mechanisms underlying this effect. Moreover, it looks into how the availability of upcoming dual and triple incretin receptor agonists might expand the possibility for cardiovascular protection in people with type 2 diabetes.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D002318 Cardiovascular Diseases Pathological conditions involving the CARDIOVASCULAR SYSTEM including the HEART; the BLOOD VESSELS; or the PERICARDIUM. Adverse Cardiac Event,Cardiac Events,Major Adverse Cardiac Events,Adverse Cardiac Events,Cardiac Event,Cardiac Event, Adverse,Cardiac Events, Adverse,Cardiovascular Disease,Disease, Cardiovascular,Event, Cardiac
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067757 Glucagon-Like Peptide-1 Receptor A receptor for GLUCAGON-LIKE PEPTIDE 1 (GLP-1) expressed primarily on the surface of beta and ductal exocrine cells of the pancreas, as well as cells of other tissues. GLP-1 acts through GLP-1R to potentiate signaling in pancreatic cells in response to glucose-stimulated insulin secretion (GSIS). GLP-1 Receptor,GLP-1R Receptor,GLP1R Protein,GLP1R Receptor,GLP 1 Receptor,GLP 1R Receptor,Glucagon Like Peptide 1 Receptor,Peptide-1 Receptor, Glucagon-Like,Protein, GLP1R,Receptor, GLP-1,Receptor, GLP-1R,Receptor, GLP1R,Receptor, Glucagon-Like Peptide-1
D052216 Glucagon-Like Peptide 1 A peptide of 36 or 37 amino acids that is derived from PROGLUCAGON and mainly produced by the INTESTINAL L CELLS. GLP-1(1-37 or 1-36) is further N-terminally truncated resulting in GLP-1(7-37) or GLP-1-(7-36) which can be amidated. These GLP-1 peptides are known to enhance glucose-dependent INSULIN release, suppress GLUCAGON release and gastric emptying, lower BLOOD GLUCOSE, and reduce food intake. GLP-1,Glucagon-Like Peptide-1,GLP 1,Glucagon Like Peptide 1
D054795 Incretins Peptides which stimulate INSULIN release from the PANCREATIC BETA CELLS following oral nutrient ingestion, or postprandially. Glucose-Dependent Insulin-Releasing Hormone,Incretin,Incretin Effect,Incretin Effects,Effect, Incretin,Effects, Incretin,Glucose Dependent Insulin Releasing Hormone,Hormone, Glucose-Dependent Insulin-Releasing,Insulin-Releasing Hormone, Glucose-Dependent

Related Publications

Anna Solini, and Domenico Tricò, and Stefano Del Prato
February 2018, Diabetes, obesity & metabolism,
Anna Solini, and Domenico Tricò, and Stefano Del Prato
October 2023, Diabetologia,
Anna Solini, and Domenico Tricò, and Stefano Del Prato
June 2006, Current diabetes reports,
Anna Solini, and Domenico Tricò, and Stefano Del Prato
June 2008, Journal of the Medical Association of Thailand = Chotmaihet thangphaet,
Anna Solini, and Domenico Tricò, and Stefano Del Prato
March 2004, Diabetologia,
Anna Solini, and Domenico Tricò, and Stefano Del Prato
April 2012, Hippokratia,
Anna Solini, and Domenico Tricò, and Stefano Del Prato
January 2001, Nursing times,
Anna Solini, and Domenico Tricò, and Stefano Del Prato
March 2005, MMW Fortschritte der Medizin,
Anna Solini, and Domenico Tricò, and Stefano Del Prato
December 2018, BMJ (Clinical research ed.),
Anna Solini, and Domenico Tricò, and Stefano Del Prato
January 2007, Revista clinica espanola,
Copied contents to your clipboard!