Studies of tobacco mosaic virus reassembly with an RNA tail blocked by a hybridised and cross-linked probe. 1986

L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler

Segments of cloned cDNA to tobacco mosaic virus RNA, 150--300-bases long, have been hybridised and cross-linked to the RNA, which has then been used for reassembly experiments. This enables the elongation reaction, which does not encapsidate the double-stranded region generated, to be stopped at specific regions along the RNA and the resulting particles to be characterised, by measuring the lengths of the rods in the electron microscope. With hybridisation to the 3'-tail the entire RNA contiguous to the nucleation region is encapsidated, from the 5'-terminus up to the modified region. When the double-stranded region is on the 5'-side of the nucleation region, the mean length of the particles corresponds to a situation in which the double-stranded region is unable to enter the central hole of the growing rod, but the 3'-tail of the RNA is completely encapsidated. The longest particles hybridised on the 5'-tail (i.e. in a class longer than the mean length) show an effect complementary to those with a 3'-block, and have lengths which correspond to encapsidation from the modified region to the 3'-terminus, despite the continued presence of the 5'-tail up the rod. In all cases where there is a remaining 5'-tail the lengths observed can only be explained if elongation has occurred substantially, or probably completely, along the 3'-tail. Hence elongation must have occurred simultaneously along both the 5' and 3'-tails of the tobacco mosaic virus RNA after initiation on the internal nucleation region.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014027 Tobacco Mosaic Virus The type species of TOBAMOVIRUS which causes mosaic disease of NICOTIANA. Transmission occurs by mechanical inoculation. Mosaic Virus, Tobacco,Mosaic Viruses, Tobacco,Tobacco Mosaic Viruses,Virus, Tobacco Mosaic,Viruses, Tobacco Mosaic

Related Publications

L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
September 1975, FEBS letters,
L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
September 1979, Virology,
L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
January 1963, Biochemistry,
L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
February 1986, Plant cell reports,
L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
February 1966, Virology,
L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
April 1968, Proceedings of the National Academy of Sciences of the United States of America,
L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
April 1976, Journal of virology,
L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
January 1976, Annales de microbiologie,
L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
March 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
L Fairall, and J T Finch, and C F Hui, and C R Cantor, and P J Butler
December 1976, FEBS letters,
Copied contents to your clipboard!