Minus-strand initiation by brome mosaic virus replicase within the 3' tRNA-like structure of native and modified RNA templates. 1986

W A Miller, and J J Bujarski, and T W Dreher, and T C Hall

An RNA-dependent RNA polymerase (replicase) extract from brome mosaic virus-infected barley leaves has been shown to initiate synthesis of (-) sense RNA from (+) sense virion RNA. Initiation occurred de novo, as demonstrated by the incorporation of [gamma-32P]GTP into the product. Sequencing using cordycepin triphosphate to terminate (-) strands during their synthesis by the replicase generated sequence ladders that confirmed that copying was accurate, and that initiation occurred very close to the 3' end. The precise site of initiation was further defined by testing the replicase template activity after stepwise removal of 3'-terminal nucleotides. Whereas removal of the terminal A did not decrease template activity, removal of the next nucleotide (C-2) did. Thus, initiation almost certainly occurs opposite the penultimate 3'-nucleotide (C-2) in vitro. The structure of the double-stranded replicative form of RNA isolated from brome mosaic virus-infected leaves was consistent with such a mechanism occurring in vivo, in that it lacked the 3'-terminal A found on virion RNAs. The specific site of (-) strand initiation and normal template activity were retained for RNAs with as many as 15 to 30 A residues added to the 3' end. However, only limited oligonucleotide 3' extensions can be present on active templates. In order to assess the 5' extent of sequences required for an active template, a 134-nucleotide-long fragment of brome mosaic virus RNA, corresponding to the tRNA-like structure, was generated. This RNA had high template activity, but a shorter 3' (85-nucleotide) fragment was inactive. RNAs with various heterologous sequences 5' to position 134 also showed high template activity. Thus, the 3'-terminal tRNA-like structure common to all four brome mosaic virus virion RNAs contains all of the signals required for initiation of replication, and sequences 5' to it do not play a role in template selection.

UI MeSH Term Description Entries
D009029 Mosaic Viruses Viruses which produce a mottled appearance of the leaves of plants. Mosaic Virus,Virus, Mosaic,Viruses, Mosaic
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012316 RNA Nucleotidyltransferases Enzymes that catalyze the template-directed incorporation of ribonucleotides into an RNA chain. EC 2.7.7.-. Nucleotidyltransferases, RNA
D012324 RNA-Dependent RNA Polymerase An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293) Nucleoside-Triphosphate:RNA Nucleotidyltransferase (RNA-directed),RNA Replicase,RNA-Dependent RNA Replicase,RNA-Directed RNA Polymerase,RNA Dependent RNA Polymerase,RNA Dependent RNA Replicase,RNA Directed RNA Polymerase,RNA Polymerase, RNA-Dependent,RNA Polymerase, RNA-Directed,RNA Replicase, RNA-Dependent,Replicase, RNA,Replicase, RNA-Dependent RNA
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

W A Miller, and J J Bujarski, and T W Dreher, and T C Hall
April 2004, Journal of virology,
W A Miller, and J J Bujarski, and T W Dreher, and T C Hall
July 1989, Proceedings of the National Academy of Sciences of the United States of America,
W A Miller, and J J Bujarski, and T W Dreher, and T C Hall
December 2000, Journal of virology,
W A Miller, and J J Bujarski, and T W Dreher, and T C Hall
February 1999, Journal of molecular biology,
W A Miller, and J J Bujarski, and T W Dreher, and T C Hall
November 2000, Journal of virology,
W A Miller, and J J Bujarski, and T W Dreher, and T C Hall
January 1984, Plant molecular biology,
W A Miller, and J J Bujarski, and T W Dreher, and T C Hall
December 2004, Journal of virology,
W A Miller, and J J Bujarski, and T W Dreher, and T C Hall
November 1993, The Journal of general virology,
W A Miller, and J J Bujarski, and T W Dreher, and T C Hall
January 1993, Biochimie,
Copied contents to your clipboard!