The prothrombinase-catalyzed activation of prothrombin proceeds through the intermediate meizothrombin in an ordered, sequential reaction. 1986

S Krishnaswamy, and K G Mann, and M E Nesheim

The activation of bovine prothrombin by prothrombinase (Factor Xa, Factor Va, synthetic phospholipid vesicles, and calcium ion) was studied in the presence of the fluorescent, reversible thrombin inhibitor dansylarginine-N-(3-ethyl-1,5-pentanediyl) amide (DAPA). Recordings of fluorescence intensity during prothrombin activation exhibited maxima that decreased to stable limiting values. These data suggested the transient appearance of the meizothrombin-DAPA complex, which exhibits fluorescence with 1.5-fold greater intensity than the thrombin-DAPA complex. At substrate concentrations well below Km, progress curves could be fitted by equations describing an ordered, sequential conversion of prothrombin to thrombin through the intermediate meizothrombin via two pseudo-first order steps. The pseudo-first order rate constants for both steps varied linearly with enzyme concentration, indicating that both steps are catalyzed by prothrombinase. The progress of the reaction was also monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry analyses of aliquots removed at intervals spanning the reaction. These analyses confirmed both the existence of meizothrombin and its time course as predicted from the equations used to analyze fluorescence intensity profiles. Meizothrombin levels peaked at about 0.3 mol/mol initial prothrombin under the conditions typically studied. In addition, prethrombin 2, which is the intermediate expected from cleavages occurring in the order opposite that required to form meizothrombin, was not observed under any of the conditions examined. These data indicate that prothrombin activation catalyzed by the fully assembled prothrombinase complex proceeds via an ordered, sequential reaction with meizothrombin as the sole intermediate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011516 Prothrombin A plasma protein that is the inactive precursor of thrombin. It is converted to thrombin by a prothrombin activator complex consisting of factor Xa, factor V, phospholipid, and calcium ions. Deficiency of prothrombin leads to hypoprothrombinemia. Coagulation Factor II,Factor II,Blood Coagulation Factor II,Differentiation Reversal Factor,Factor II, Coagulation,Factor, Differentiation Reversal,II, Coagulation Factor
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D004950 Esterases Any member of the class of enzymes that catalyze the cleavage of an ester bond and result in the addition of water to the resulting molecules. Esterase
D005165 Factor V Heat- and storage-labile plasma glycoprotein which accelerates the conversion of prothrombin to thrombin in blood coagulation. Factor V accomplishes this by forming a complex with factor Xa, phospholipid, and calcium (prothrombinase complex). Deficiency of factor V leads to Owren's disease. Coagulation Factor V,Proaccelerin,AC Globulin,Blood Coagulation Factor V,Factor 5,Factor Five,Factor Pi,Factor V, Coagulation
D005170 Factor X Storage-stable glycoprotein blood coagulation factor that can be activated to factor Xa by both the intrinsic and extrinsic pathways. A deficiency of factor X, sometimes called Stuart-Prower factor deficiency, may lead to a systemic coagulation disorder. Autoprothrombin III,Coagulation Factor X,Stuart Factor,Stuart-Prower Factor,Blood Coagulation Factor X,Factor 10,Factor Ten,Stuart Prower Factor,Factor X, Coagulation

Related Publications

S Krishnaswamy, and K G Mann, and M E Nesheim
January 1993, Methods in enzymology,
S Krishnaswamy, and K G Mann, and M E Nesheim
March 1986, The Journal of biological chemistry,
S Krishnaswamy, and K G Mann, and M E Nesheim
November 2012, The Journal of biological chemistry,
S Krishnaswamy, and K G Mann, and M E Nesheim
December 1990, Thrombosis and haemostasis,
S Krishnaswamy, and K G Mann, and M E Nesheim
December 1988, Thrombosis and haemostasis,
S Krishnaswamy, and K G Mann, and M E Nesheim
November 1991, The Journal of biological chemistry,
S Krishnaswamy, and K G Mann, and M E Nesheim
January 1995, The Journal of biological chemistry,
S Krishnaswamy, and K G Mann, and M E Nesheim
January 2024, Journal of the American Chemical Society,
Copied contents to your clipboard!