Emodin attenuates diabetic kidney disease by inhibiting ferroptosis via upregulating Nrf2 expression. 2023

Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
Department of Emergency, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.

Diabetic kidney disease (DKD) poses a threat to people's health. The current treatments only provide partial relief of symptoms. Therefore, seeking a promising therapeutic medication for the prevention and control on DKD will benefit patients. Recently, a novel iron-dependent and non-apoptotic regulated mode of cell death, termed as ferroptosis, is expected to offer us a novel insight into the mechanism of DKD. We conducted experiments to investigate the role of ferroptosis in the development of DKD. Iron accumulation, weakened antioxidant capacity and ROS overproduction were observed in the renal tissues of STZ-induced diabetic rats. A persistent high glucose condition contributed to down regulated levels of Glutathione Peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11) which marked the occurrence of ferroptosis. Treatment of Emodin in DKD models could significantly attenuated these changes and reduced renal injury. Besides, NFE2-related factor 2 (Nrf2), an important antioxidant regulator, was inhibited in both in vivo and in vitro assay, which contributes to Reactive Oxygen Species (ROS) generation that further promoted the expression of ferroptosis related protein. These unwanted effects were offset by the intervention of Emodin. The specific Nrf2 knock out enhanced cell's sensitivity to ferroptosis by being exposed to high glucose culture, which was improved by treatment of Emodin via restoring activity of Nrf2. In conclusion, our research demonstrated that Emodin exerted renal protection against DKD via inhibiting ferroptosis and restoring Nrf2 mediated antioxidant capacity, which could be employed as a novel therapeutic medication against DKD.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D003928 Diabetic Nephropathies KIDNEY injuries associated with diabetes mellitus and affecting KIDNEY GLOMERULUS; ARTERIOLES; KIDNEY TUBULES; and the interstitium. Clinical signs include persistent PROTEINURIA, from microalbuminuria progressing to ALBUMINURIA of greater than 300 mg/24 h, leading to reduced GLOMERULAR FILTRATION RATE and END-STAGE RENAL DISEASE. Diabetic Glomerulosclerosis,Glomerulosclerosis, Diabetic,Diabetic Kidney Disease,Diabetic Nephropathy,Intracapillary Glomerulosclerosis,Kimmelstiel-Wilson Disease,Kimmelstiel-Wilson Syndrome,Nodular Glomerulosclerosis,Diabetic Kidney Diseases,Glomerulosclerosis, Nodular,Kidney Disease, Diabetic,Kidney Diseases, Diabetic,Kimmelstiel Wilson Disease,Kimmelstiel Wilson Syndrome,Nephropathies, Diabetic,Nephropathy, Diabetic,Syndrome, Kimmelstiel-Wilson
D004642 Emodin Purgative anthraquinone found in several plants, especially RHAMNUS PURSHIANA. It was formerly used as a laxative, but is now used mainly as a tool in toxicity studies. Casanthranol,Frangula Emodin,Peristim,Rheum Emodin,Archin,Frangulic Acid,Emodin, Frangula,Emodin, Rheum
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000079403 Ferroptosis A form of REGULATED CELL DEATH initiated by oxidative perturbations of the intracellular microenvironment that is under constitutive control by glutathione peroxidase 4 and can be inhibited by iron chelators and lipophilic antioxidants. Oxytosis
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D051267 NF-E2-Related Factor 2 A basic-leucine zipper transcription factor that was originally described as a transcriptional regulator controlling expression of the BETA-GLOBIN gene. It may regulate the expression of a wide variety of genes that play a role in protecting cells from oxidative damage. Nfe2l2 Protein,Nuclear Factor (Erythroid-Derived 2)-Like 2 Protein,Nuclear Factor E2-Related Factor 2,NF E2 Related Factor 2,Nuclear Factor E2 Related Factor 2

Related Publications

Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
October 2023, Molecular medicine (Cambridge, Mass.),
Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
January 2023, The American journal of Chinese medicine,
Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
December 2024, Renal failure,
Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
April 2023, Journal of animal science and biotechnology,
Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
December 2023, European journal of pharmacology,
Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
February 2023, Free radical biology & medicine,
Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
March 2024, Free radical research,
Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
February 2024, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
October 2023, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Jing Ji, and Pengyu Tao, and Qian Wang, and Mengmeng Cui, and Mingfeng Cao, and Yuzhen Xu
January 2023, Cell death & disease,
Copied contents to your clipboard!