The effects of androgen on the transcription of specific genes in guinea pig seminal vesicle epithelium. 1986

J T Moore, and C M Veneziale, and E D Wieben

Steroid hormones have been shown to have highly differential effects on the expression of abundant cell-specific protein genes in a multitude of model tissues. In rat seminal vesicle, for example, DNA clones representing two major secretory protein genes have been used to show that both of the genes are differentially regulated by androgen. In this paper, we have examined the effects of androgen on the transcription of two major secretory protein genes in guinea pig seminal vesicle epithelium. Nuclear run-off experiments were used to show that castration of the adult resulted in a 3-fold decrease in total transcription activity. Surprisingly, the decrease in total transcriptional activity was not reflected in a differential decrease in the transcriptional activity of the two major secretory protein genes. When the effects of castration on the transcriptional activity of the major secretory protein genes were compared to the effects on other genes, it was found that the transcriptional activity of each gene examined was decreased by the same magnitude as the major secretory protein genes. Similarly, the transcriptional activity of every gene examined increased by the same magnitude as the major secretory protein genes during hormone repletion of the castrated adult. Thus, in contrast to the differential effects of steroids on the transcription of abundant cell-specific proteins in many other steroid-dependent tissues, the transcription of major secretory proteins in guinea pig seminal vesicle epithelium appears to be regulated in parallel with many other genes. The generalized effects of androgen on transcriptional activity could account for the generalized effects of androgen on seminal vesicle epithelial cell structure and function.

UI MeSH Term Description Entries
D008297 Male Males
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

J T Moore, and C M Veneziale, and E D Wieben
January 1977, Advances in sex hormone research,
J T Moore, and C M Veneziale, and E D Wieben
February 1981, Endocrinology,
J T Moore, and C M Veneziale, and E D Wieben
February 1974, The Journal of pharmacology and experimental therapeutics,
J T Moore, and C M Veneziale, and E D Wieben
August 1977, The Biochemical journal,
J T Moore, and C M Veneziale, and E D Wieben
December 1955, The American journal of physiology,
J T Moore, and C M Veneziale, and E D Wieben
February 1975, The Journal of biological chemistry,
J T Moore, and C M Veneziale, and E D Wieben
September 1955, The American journal of physiology,
Copied contents to your clipboard!