Sparteine oxidation is practically abolished in quinidine-treated patients. 1986

R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton

In eight patients a sparteine-test was carried out immediately before and after 1 week of treatment with quinidine 600-800 mg day-1. Before treatment one patient was classified as a poor metaboliser (metabolic ratio: greater than or equal to 20), and seven patients as extensive metabolisers. During quinidine treatment, the formation of sparteine metabolites (2- and 5-dehydrosparteine) was practically abolished. Patients initially classified as extensive metabolisers thus exhibited the phenotype of poor metabolisers during quinidine treatment.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011802 Quinidine An optical isomer of quinine, extracted from the bark of the CHINCHONA tree and similar plant species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. It prolongs cellular ACTION POTENTIALS, and decreases automaticity. Quinidine also blocks muscarinic and alpha-adrenergic neurotransmission. Adaquin,Apo-Quinidine,Chinidin,Quincardine,Quinidex,Quinidine Sulfate,Quinora,Apo Quinidine,Sulfate, Quinidine
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000369 Aged, 80 and over Persons 80 years of age and older. Oldest Old
D013034 Sparteine A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. 7,14-Methano-2H,6H-dipyrido(1,2-a:1',2'-e)(1,5)diazocine, dodecahydro-, (7S-(7alpha,7aalpha,14alpha,14abeta))-,Lupinidin,Lupinidine,Pachycarpine,D-sparteine,Depasan Retard,Genisteine Alkaloid,L-Sparteine,Pachycarpine Sulfate (1:1), Pentahydrate, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Hydrochloride, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Hydrochloride, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Hydroiodide, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Monohydrochloride, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Monohydroiodide, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Sulfate,Sparteine Sulfate (1:1), (7S-(7alpha,7aalpha,14alpha,14aalpha))-Isomer,Sparteine Sulfate (1:1), (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Sulfate Anhydrous,Sparteine, (+)-Isomer,Sparteine, (-)-Isomer,Sparteine, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine, (7R-(7alpha,7abeta,14alpha,14abeta))-Isomer,Sparteine, (7S-(7alpha,7aalpha,14alpha,14aalpha))-Isomer,Sparteine, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine, (7S-(7alpha,7abeta,14alpha,14abeta))-Isomer,alpha-Isosparteine,beta-Isosparteine,Anhydrous, Sparteine Sulfate,Sulfate Anhydrous, Sparteine,alpha Isosparteine,beta Isosparteine

Related Publications

R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
August 1986, British journal of clinical pharmacology,
R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
January 1995, European journal of clinical pharmacology,
R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
February 1990, British journal of clinical pharmacology,
R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
January 1988, Drug metabolism and disposition: the biological fate of chemicals,
R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
March 1990, British journal of clinical pharmacology,
R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
November 1985, Acta pharmacologica et toxicologica,
R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
November 1988, Klinische Wochenschrift,
R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
March 1948, Federation proceedings,
R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
January 1989, European journal of clinical pharmacology,
R Brinn, and K Brøsen, and L F Gram, and T Haghfelt, and S V Otton
June 1986, British journal of clinical pharmacology,
Copied contents to your clipboard!