Discovery of Coixol Derivatives as Potent Anti-inflammatory Agents. 2023

Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.

Coixol, a derivative of 2-benzoxazolinone extracted from coix (Coix lachryma-jobi L. var. ma-yuen Stapf), has demonstrated promising anti-inflammatory activity and low cytotoxicity. In this study, 26 coixol derivatives were designed and synthesized by hybridization with cinnamic acid to identify new anti-inflammatory agents. The anti-inflammatory activities of the derivatives were screened using LPS-induced overexpression of nitric oxide (NO) in RAW264.7 macrophages. On the basis of the screening results, compounds containing furan (9c) or nitrofuran (9j) moieties displayed more pronounced activity than coixol and celecoxib. Mechanistic investigations revealed that 9c and 9j suppressed the expression of induced nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, which was associated with the inhibition of the nuclear factor (NF)-κB signaling pathway. In vivo studies confirmed the anti-inflammatory activity of 9c and 9j in a xylene-induced mice auricles edema model. The preliminary in vitro and in vivo research findings suggest that 9c and 9j have the potential to be developed as anti-inflammatory agents.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
March 2018, Chinese journal of natural medicines,
Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
January 2005, Medicina (Kaunas, Lithuania),
Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
May 2022, Journal of medicinal chemistry,
Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
June 2017, Molecules (Basel, Switzerland),
Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
December 2017, European journal of medicinal chemistry,
Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
May 2016, European journal of medicinal chemistry,
Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
January 2016, Chemical & pharmaceutical bulletin,
Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
May 2024, Chemistry & biodiversity,
Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
January 2023, Medicinal chemistry (Shariqah (United Arab Emirates)),
Enjing Cui, and Shihu Qian, and Jiaming Li, and Xueyang Jiang, and Hongwei Wang, and Shuaishuai Du, and Le Du
April 2024, Journal of Asian natural products research,
Copied contents to your clipboard!