Xenobiotic metabolism in human alveolar type II cells isolated by centrifugal elutriation and density gradient centrifugation. 1986

T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts

Alveolar type II cells were isolated from five human lung specimens obtained during resection or lobectomy and enriched to 63-85% purity. Digestion with Sigma protease type XIV followed by centrifugal elutriation and Percoll density gradient centrifugation yielded 1.2 +/- 0.4 X 10(6) cells/g lung in the type II cell fractions. The activities of some enzymes involved in the metabolism of xenobiotics were determined in these freshly isolated type II cells and compared with activities in alveolar macrophages and fractions of unseparated cells from the same tissue samples. Reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase activity was similar in the three cell fractions from all five patients (18-29 nmol/mg protein/min). An antibody to rabbit reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase inhibited reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reduction as much as 70% in microsomal preparations of the isolated human pulmonary cells, although this same antibody barely reacted with microsomes of the human cells in a Western blot assay. Epoxide hydrolase activity was highest in the alveolar type II cells (1.08 +/- 0.17 nmol/mg protein/min). This activity was 6 times higher than in the alveolar macrophage or unseparated cell fractions. 7-Ethoxycoumarin deethylase activity, a cytochrome P-450-dependent pathway, was low or undetectable in the three cell fractions. Trace amounts of 7-ethoxyresorufin O-deethylase activity (0.5-1.5 pmol/mg protein/min) were detected in microsomes of the isolated human cells, even though a polycyclic hydrocarbon-inducible cytochrome P-450 which metabolizes 7-ethoxyresorufin (form 6 in rabbits) was not detected immunochemically.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009245 NADH Dehydrogenase A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1. NADH Cytochrome c Reductase,Diaphorase (NADH Dehydrogenase),NADH (Acceptor) Oxidoreductase,NADH Cytochrome c Oxidoreductase,Dehydrogenase, NADH
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D005260 Female Females

Related Publications

T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
September 1979, In vitro,
T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
January 1988, Developmental and comparative immunology,
T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
June 1986, Biochimica et biophysica acta,
T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
June 1981, Biochemical pharmacology,
T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
August 1983, Biochimica et biophysica acta,
T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
June 1979, Cell biophysics,
T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
December 1985, The Kobe journal of medical sciences,
T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
June 1984, Environmental health perspectives,
T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
October 1986, Acta endocrinologica,
T R Devereux, and T E Massey, and M R Van Scott, and J Yankaskas, and J R Fouts
January 1980, Journal of immunological methods,
Copied contents to your clipboard!