A modified methylation analysis is described which allows the elucidation of the structure of the inner core region [heptose/3-deoxy-D-manno-2-octulosonic acid (KDO)] of enterobacterial lipopolysaccharides (LPS) of Salmonella minnesota rough mutants (Re, strain R595; and Rd2P-, strain R4). Methylation, carboxyl-reduction, remethylation, hydrolysis, carbonyl-reduction, and acetylation of the Re-mutant LPS yielded the 2,6-di-O-acetyl and 2,4,6-tri-O-acetyl derivatives of partially methylated 3-deoxyoctitol in equimolar amounts, indicating the presence of a terminal and a 4-linked pyranosidic KDO residue. For Rd2P- LPS, the hydrolysis step involved 0.1M trifluoroacetic acid at 100 degrees for 1 h which cleaved ketosidic linkages, and the final products included the foregoing acetyl derivatives in the molar ratio of 1:02 and a partially methylated and acetylated 3-deoxyoctitol derivative which was substituted at O-5 by a methylated heptopyranosyl residue. Trideuteriomethylation of the latter product followed by methanolysis and acetylation gave 5-O-acetyl-3-deoxy-1,7,8-tri-O-methyl-2,4,6-tri-O-trideuteriomethyl++ +-D- glycero-D-talo/galacto-octitol and 1,5-di-O-acetyl-2,3,4,6,7-penta-O-methyl-L-glycero-D-manno-heptitol++ +. These results prove the presence of a (2----4)-linked KDO disaccharide in Re LPS and show that the core region of Rd2P- LPS contains a terminal alpha-L-glycero-D-manno-heptopyranosyl group and a non-substituted, a 4-O-, and a 4,5-di-O-substituted pyranosidic KDO residue in the molar ratios 1:1:0.2:1.