The characterisation of antimicrobial resistant Escherichia coli from dairy calves. 2023

Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand.

Introduction. Dairy calves, particularly pre-weaned calves have been identified as a common source of multidrug resistant (MDR) Escherichia coli.Gap statement. E. coli strains isolated from dairy calves and the location of their resistance genes (plasmid or chromosomal) have not been well characterised.Aim. To characterise the phenotypic and genotypic features as well as the population structure of antimicrobial-resistant E. coli isolated from calves located on dairy farms that feed waste-milk to their replacement calves.Methodology. Recto-anal swab enrichments from 40 dairy calves (≤ 14 days old) located on four dairy farms were examined for tetracycline, streptomycin, ciprofloxacin, and third-generation cephalosporin resistant E. coli. Whole genome sequencing was performed using both short- and long-read technologies on selected antimicrobial resistant E. coli.Results. Fifty-eight percent (23/40) of calves harboured antimicrobial resistant E. coli: 43 % (17/40) harboured tetracycline resistant, and 23 % (9/40) harboured chromosomal mediated AmpC producing E. coli. Whole genome sequencing of 27 isolates revealed five sequence types, with ST88 being the dominant ST (17/27, 63 % of the sequenced isolates) followed by ST1308 (3/27, 11 %), along with the extraintestinal pathogenic E. coli lineages ST69 (3/27, 11 %), ST10 (2/27, 7 %), and ST58 (2/27, 7 %). Additionally, 16 isolates were MDR, harbouring additional resistance genes that were not tested phenotypically. Oxford Nanopore long-read sequencing technologies enabled the location of multiple resistant gene cassettes in IncF plasmids to be determined.Conclusion. Our study identified a high incidence of tetracycline and streptomycin-resistant E. coli in dairy calves, and highlighted the presence of multidrug-resistant strains, emphasising the need for further investigation into potential associations with farm management practices.

UI MeSH Term Description Entries
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D004927 Escherichia coli Infections Infections with bacteria of the species ESCHERICHIA COLI. E coli Infections,E. coli Infection,Infections, E coli,Infections, Escherichia coli,E coli Infection,E. coli Infections,Escherichia coli Infection,Infection, E coli,Infection, E. coli,Infection, Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013307 Streptomycin An antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by inhibiting the initiation and elongation processes during protein synthesis. Estreptomicina CEPA,Estreptomicina Clariana,Estreptomicina Normon,Strepto-Fatol,Strepto-Hefa,Streptomycin Grünenthal,Streptomycin Sulfate,Streptomycin Sulfate (2:3) Salt,Streptomycin Sulphate,Streptomycine Panpharma,Strepto Fatol,Strepto Hefa
D013752 Tetracycline A naphthacene antibiotic that inhibits AMINO ACYL TRNA binding during protein synthesis. 4-Epitetracycline,Achromycin,Achromycin V,Hostacyclin,Sustamycin,Tetrabid,Tetracycline Hydrochloride,Tetracycline Monohydrochloride,Topicycline,4 Epitetracycline

Related Publications

Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
June 2006, Applied and environmental microbiology,
Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
January 1984, The Veterinary record,
Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
June 2023, Journal of global antimicrobial resistance,
Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
January 2012, Acta veterinaria Scandinavica,
Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
February 2013, Current microbiology,
Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
January 2015, Journal of dairy science,
Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
September 2015, Journal of dairy science,
Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
January 2019, Foodborne pathogens and disease,
Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
June 2000, Journal of veterinary medicine. B, Infectious diseases and veterinary public health,
Merning Mwenifumbo, and Adrian L Cookson, and Shengguo Zhao, and Ahmed Fayaz, and A Springer Browne, and Jackie Benschop, and Sara A Burgess
December 2020, Preventive veterinary medicine,
Copied contents to your clipboard!