Dimyristoylphosphatidic acid/cholesterol bilayers. Thermodynamic properties and kinetics of the phase transition as studied by the pressure jump relaxation technique. 1986

A Blume, and M Hillmann

Lipid bilayers and monolayers composed of dimyristoylphosphatidic acid (DMPA) and cholesterol were characterized by differential scanning calorimetry and film balance measurements. Increasing cholesterol content decreases the bilayer phase transition temperature and enthalpy in a manner similar to that observed before for other lipid/cholesterol systems. In monomolecular films at the air-water interface cholesterol exhibits the well known condensing effect in the liquid-expanded phase, while the liquid-condensed phase is less affected. As with the bilayer phase transition, the transition temperature and change in area at the liquid-condensed to liquid-expanded phase transition, as measured from isobars at 25 dynes/cm, decreases with increasing cholesterol content. The kinetics of the phase transition of DMPA/cholesterol bilayers were measured using the pressure jump relaxation technique with optical detection. Three relaxation times were observed. The relaxation times and amplitudes pass through maximum values at the transition midpoint. With increasing cholesterol content the maximum values of the relaxation times decrease but not in a linear fashion. The time constants display an intermediate maximum at ca. 10% to 12 mol% cholesterol. This observation is discussed in terms of a possible change in the nature of the phase transition from first-order with phase separation to a continuous second-order transition. The dependence of the relaxation amplitudes on cholesterol content gave evidence for nucleation being the rate limiting step for the transition in this particular system.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D020404 Glycerophospholipids Derivatives of phosphatidic acid in which the hydrophobic regions are composed of two fatty acids and a polar alcohol is joined to the C-3 position of glycerol through a phosphodiester bond. They are named according to their polar head groups, such as phosphatidylcholine and phosphatidylethanolamine. Glycerophospholipid,Phosphoglyceride,Phosphoglycerides

Related Publications

A Blume, and M Hillmann
February 1976, The Review of scientific instruments,
A Blume, and M Hillmann
January 1975, Biochimie,
A Blume, and M Hillmann
March 2006, Biochimica et biophysica acta,
Copied contents to your clipboard!