Protectin D1 Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating PI3K/AKT Signaling Pathway. 2024

Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
Department of Cardiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.

Myocardial ischemia/reperfusion (I/R) injury after the onset of acute myocardial infarction (AMI) can be life-threatening, and there is no effective strategy for therapeutic intervention. Here, we studied the potential of protectin D1 in protecting from I/R-induced cardiac damages and investigated the underlying mechanisms. An in vivo rat model of I/R after AMI induction was established through the ligation of the left anterior descending (LAD) artery to assess the cardiac functions and evaluate the protective effect of protectin D1. Protectin D1 protected against I/R-induced oxidative stress and inflammation in the rat model, improved the cardiac function, and reduced the infarct size in myocardial tissues. The beneficial effect of protectin D1 was associated with the up-regulation of miRNA-210 and the effects on PI3K/AKT signaling and HIF-1α expression. Together, our data suggest that protectin D1 could serve as a potential cardioprotective agent against I/R-associated cardiac defects.

UI MeSH Term Description Entries
D008297 Male Males
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004281 Docosahexaenoic Acids C22-unsaturated fatty acids found predominantly in FISH OILS. Docosahexaenoate,Docosahexaenoic Acid,Docosahexenoic Acids,Docosahexaenoic Acid (All-Z Isomer),Docosahexaenoic Acid Dimer (All-Z Isomer),Docosahexaenoic Acid, 3,6,9,12,15,18-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cerium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cesium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Potassium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(Z,Z,Z,Z,Z,E-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer, Sodium Salt,Docosahexaenoic Acid, Sodium Salt,Acid, Docosahexaenoic,Acids, Docosahexaenoic,Acids, Docosahexenoic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015428 Myocardial Reperfusion Injury Damage to the MYOCARDIUM resulting from MYOCARDIAL REPERFUSION (restoration of blood flow to ischemic areas of the HEART.) Reperfusion takes place when there is spontaneous thrombolysis, THROMBOLYTIC THERAPY, collateral flow from other coronary vascular beds, or reversal of vasospasm. Reperfusion Injury, Myocardial,Injury, Myocardial Reperfusion,Myocardial Ischemic Reperfusion Injury,Injuries, Myocardial Reperfusion,Myocardial Reperfusion Injuries,Reperfusion Injuries, Myocardial
D016277 Ventricular Function, Left The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance. Left Ventricular Function,Function, Left Ventricular,Functions, Left Ventricular,Left Ventricular Functions,Ventricular Functions, Left

Related Publications

Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
January 2013, Journal of Asian natural products research,
Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
September 2019, Acta cirurgica brasileira,
Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
January 2022, Frontiers in pharmacology,
Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
May 2017, Neurochemical research,
Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
October 2023, International immunopharmacology,
Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
April 2021, Experimental and therapeutic medicine,
Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
March 2020, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
December 2020, Molecular medicine reports,
Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
January 2019, European review for medical and pharmacological sciences,
Peng Zhang, and Jin Wang, and Xingsong Wang, and Li Wang, and Shihai Xu, and Ping Gong
November 2023, Aging,
Copied contents to your clipboard!