Bicuculline-induced alterations of response properties in functionally identified ventroposterior thalamic neurones. 1986

T P Hicks, and R Metherate, and P Landry, and R W Dykes

Extracellular recordings of 105 neurones in the cat's somatosensory thalamus were obtained with carbon fibre-containing multibarrel micropipettes. The responses of cells to natural stimulation of cutaneous or deep structures were characterized and the responses to electrical stimulation of primary somatosensory cortex were determined. Receptive fields were mapped and the functional properties were examined before and during the microiontophoretic administration of glutamate, gamma-aminobutyric acid (GABA) and bicuculline methiodide (BMI). Modality and submodality properties of all cells tested apparently remained unchanged qualitatively, despite all pharmacological interventions. BMI lowered the response threshold of a majority of the 48 cells tested for this variable, although almost 25% responded with elevated thresholds. BMI changed the temporal properties of the responses of both thalamocortical relay neurones and of presumed interneurones. Discharges evoked by natural stimuli and by electrical stimulation of the cortex were prolonged and their pattern was altered. Decreases in the frequency of bursts of discharges were often observed with BMI, and these bursts were invariably prolonged and the interspike interval profiles were altered. Receptive field size changes were observed only in 8 of 48 neurones. For two of these, the field size decreased, while for the others there were small increases.

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008297 Male Males
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D005260 Female Females
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

T P Hicks, and R Metherate, and P Landry, and R W Dykes
January 1987, Experimental brain research,
T P Hicks, and R Metherate, and P Landry, and R W Dykes
January 1994, Experimental brain research,
T P Hicks, and R Metherate, and P Landry, and R W Dykes
June 1994, The Journal of experimental biology,
T P Hicks, and R Metherate, and P Landry, and R W Dykes
January 1994, The Journal of experimental biology,
T P Hicks, and R Metherate, and P Landry, and R W Dykes
October 1993, The Journal of physiology,
T P Hicks, and R Metherate, and P Landry, and R W Dykes
August 1974, Neuropharmacology,
T P Hicks, and R Metherate, and P Landry, and R W Dykes
January 1997, Brain research,
T P Hicks, and R Metherate, and P Landry, and R W Dykes
March 2019, Journal of neuroendocrinology,
T P Hicks, and R Metherate, and P Landry, and R W Dykes
April 1984, The Journal of physiology,
Copied contents to your clipboard!