Purification and characterization of phosphoenolpyruvate carboxykinase from the parasitic helminth Ascaris suum. 1986

S P Rohrer, and H J Saz, and T Nowak

Phosphoenolpyruvate carboxykinase has been purified from homogenates of Ascaris suum muscle strips to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purification is a three-step procedure which yields pure enzyme in milligram quantities with good yield. The subunit molecular weight of the Ascaris enzyme is between 75,000 and 80,000. The native molecular weight is 83,000 as determined by gel filtration. The kinetic constants for substrates of the carboxylation reaction were determined and compared to those measured for the avian liver enzyme. From kinetic studies it appears likely that two separate roles for divalent metal ions exist in the catalytic process. Studies conducted with Mn2+ or with micromolar concentrations of Mn2+, in the presence of millimolar concentrations of Mg2+ suggest that Mn2+ but not Mg2+ binds directly to and activates the enzyme while either Mn2+ or Mg2+ may bind to the nucleotide resulting in the metal-nucleotide complex. The metal-nucleotide is the active form of the substrate for the reaction. In the presence of Mg2+, an increase in the Mn2+ concentration results in a decrease in the Km for P-enolpyruvate suggesting a direct role for Mn2+ stimulation and regulation of activity. The concentrations of Mn2+ and Mg2+ in Ascaris muscle strips were determined by atomic absorption spectroscopy and support the proposed hypothesis of a specific Mn2+ activation of the enzyme. The nucleotides ATP and ITP act as competitive inhibitors against GTP with KI values of 0.50 and 0.75 mM, respectively. ITP is a competitive inhibitor against both IDP and P-enolpyruvate, suggesting overlapping binding sites for the two substrates on the enzyme.

UI MeSH Term Description Entries
D007293 Inosine Triphosphate Inosine 5'-(tetrahydrogen triphosphate). An inosine nucleotide containing three phosphate groups esterified to the sugar moiety. Synonym: IRPPP. ITP,Triphosphate, Inosine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001200 Ascaris A genus of nematodes of the superfamily ASCARIDOIDEA whose species usually inhabit the intestine. Ascari

Related Publications

S P Rohrer, and H J Saz, and T Nowak
June 1982, International journal for parasitology,
S P Rohrer, and H J Saz, and T Nowak
December 1969, Comparative biochemistry and physiology,
S P Rohrer, and H J Saz, and T Nowak
September 1993, Experimental parasitology,
S P Rohrer, and H J Saz, and T Nowak
August 2002, Archives of biochemistry and biophysics,
S P Rohrer, and H J Saz, and T Nowak
February 2004, Protein expression and purification,
S P Rohrer, and H J Saz, and T Nowak
December 1983, Molecular and biochemical parasitology,
S P Rohrer, and H J Saz, and T Nowak
April 1992, The Biochemical journal,
S P Rohrer, and H J Saz, and T Nowak
April 1996, Molecular and biochemical parasitology,
S P Rohrer, and H J Saz, and T Nowak
June 1995, Molecular and biochemical parasitology,
S P Rohrer, and H J Saz, and T Nowak
April 1992, Molecular and biochemical parasitology,
Copied contents to your clipboard!