Translational profiles of alpha 1-, alpha 2-, and beta-globin messenger ribonucleic acids in human reticulocytes. 1986

S H Shakin, and S A Liebhaber

In human reticulocytes, the critical balancing of alpha- and beta-globin synthesis may be controlled in part by differential translation of the three major adult globin messenger RNAs (mRNAs), alpha 1, alpha 2, and beta. In this study, we determined, as a parameter of translational efficiency, the relative ribosome loading of these three mRNAs. Using oligonucleotide probes specific for the alpha 1- and alpha 2-globin mRNAs, we find that these two mRNAs have identical translational profiles. Their distribution contrasts with that of beta-globin mRNA, which is present on heavier polyribosomes and is less prevalent in pre-80S messenger ribonucleoprotein fractions. The relative distribution of alpha- vs. beta-globin mRNA is consistent with more efficient beta-globin translation. In contrast, the parallel distributions of alpha 1- and alpha 2-globin mRNAs suggests they are translated with equal efficiencies. Considering the relative concentrations of the two alpha-globin mRNAs in normal reticulocytes, this result predicts a dominant role for the alpha 2-globin locus in human alpha-globin expression.

UI MeSH Term Description Entries
D011132 Polyribosomes A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Polysomes,Polyribosome,Polysome
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

S H Shakin, and S A Liebhaber
August 1974, The Journal of biological chemistry,
S H Shakin, and S A Liebhaber
February 1975, The Journal of biological chemistry,
S H Shakin, and S A Liebhaber
January 1975, Biochimica et biophysica acta,
S H Shakin, and S A Liebhaber
February 1973, Archives internationales de physiologie et de biochimie,
S H Shakin, and S A Liebhaber
December 1971, The Journal of biological chemistry,
S H Shakin, and S A Liebhaber
February 1978, Journal of molecular biology,
S H Shakin, and S A Liebhaber
August 1972, Nature: New biology,
Copied contents to your clipboard!