Prostacyclin (PGI2) induces coronary vasodilatation in anaesthetised dogs. 1978

G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane

Prostacyclin (PGI2), the predominant metabolite of arachidonic acid in isolated hearts, relaxes strips of bovine coronary artery and is a potent vasodilator in isolated perfused hearts. We have examined the actions of prostacyclin on coronary blood flow in open chest dogs anaesthetised with chloralose. An electromagnetic flow probe was fitted to the left circumflex artery and phasic coronary flow, mean coronary flow (a measure of coronary volume flow over 4 s intervals), and coronary vascular resistance were recorded together with aortic pressure and heart rate. Intravenous infusion of prostacyclin (0.05 to 1.0 microgram.kg.1.min.1), reduced coronary vascular resistance and aortic pressure according to dose, but had only small effects on phasic coronary flow or mean coronary flow. Both tachycardia and bradycardia occurred during infusion of prostacyclin, but 6-oxo-prostaglandin F1alpha (infused at 10 micrograms.kg-1.min-1), the stable degradation produce of prostacyclin, had no cardiovascular effects. The coronary vasodilator effects of prostacyclin were clear when it was injected into the left circumflex artery via a fine catheter distal to the flow probe. Prostacyclin (0.05 to 0.5 microgram) increased phasic coronary flow and mean coronary flow up to 3 fold and reduced coronary vascular resistance without affecting aortic pressure or heart rate, although higher doses had systemic effects. Prostaglandin E1 (0.1 to 0.5 microgram), which also dilated the coronary vessels, had a longer lasting effect and was 1 to 4 times more potent than prostacyclin. Prostaglandin E2, (0.5 to 4 microgram) was less potent than prostacyclin. In four dogs prostacyclin (20 to 500 micrograms) applied epicardially to the left ventricle caused marked and prolonged coronary vasodilatation. Epicardial application of prostacyclin (10 to 25 micrograms) to the right ventricle increased coronary sinus oxygen content with minimal changes in blood pressure. The endoperoxide prostaglandin H2 was a coronary vasodilator of similar potency to prostacyclin, but its analogue U46619 is a vasoconstrictor. Inhibition of cyclo-oxygenase with indomethacin (5 mg.kg-1 i.v.) or sodium meclofenamate (2 mg.kg-1 i.v.) potentiated the coronary dilator effects of prostacyclin given intravenously or into the coronary artery. Cyclo-oxygenase inhibition did not alter the hypotensive effects and increased the coronary vasodilator potency of prostacyclin relative to prostaglandin E2. Thus the sensitivity of the coronary vascular bed to prostacyclin is enhanced when endogenous biosynthesis of prostaglandin-like substances is inhibited. Although the importance of arachidonic acid metabolites in the coronary circulation still requires validation in vivo, it is clear that prostacyclin, and not prostaglandin E2, is the prostaglandin most likely to be involved.

UI MeSH Term Description Entries
D008297 Male Males
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011448 Prostaglandin Antagonists Compounds that inhibit the action of prostaglandins. Prostaglandin Inhibitors,Antagonists, Prostaglandin,Inhibitors, Prostaglandin,Prostaglandin Antagonist,Prostaglandin Inhibitor,Antagonist, Prostaglandin,Inhibitor, Prostaglandin
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011460 Prostaglandins F (9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics. PGF
D011463 Prostaglandins H A group of physiologically active prostaglandin endoperoxides. They are precursors in the biosynthesis of prostaglandins and thromboxanes. The most frequently encountered member of this group is the prostaglandin H2.
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
January 1983, Intensive care medicine,
G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
August 1980, European journal of pharmacology,
G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
January 1984, Biomedica biochimica acta,
G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
May 1979, Prostaglandins and medicine,
G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
July 1982, Zeitschrift fur experimentelle Chirurgie,
G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
October 1979, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
December 1989, Masui. The Japanese journal of anesthesiology,
G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
January 1979, Naunyn-Schmiedeberg's archives of pharmacology,
G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
January 1989, Neuropeptides,
G J Dusting, and D J Chapple, and R Hughes, and S Moncada, and J R Vane
August 1979, The Journal of pharmacy and pharmacology,
Copied contents to your clipboard!