Increased sheep lung vascular permeability caused by Escherichia coli endotoxin. 1979

K L Brigham, and R Bowers, and J Haynes

We infused Escherichia coli endotoxin, 0.07-1.33 microgram/kg, intravenously into chronically instrumented unanesthetized sheep and measured pulmonary arterial and left atrial pressures, lung lymph flow, lymph and blood plasma protein concentrations, and arterial blood gases. Endotoxin caused a biphasic reaction: an early phase of pulmonary hypertension and a long late phase of steady state increased pulmonary vascular permeability during which pulmonary arterial and left atrial pressures were not increased significantly and lung lymph flow was 5 times the baseline value. Lymph: plasma total protein concentration ratio during the late phase (0.76 +/- 0.04) was significantly (P less than 0.05) higher than during baseline (0.66 +/- 0.03). The lymph response was reproducible. Lung lymph clearance of endogenous proteins with molecular radii (r) 35.5 to 96 A was increased during the steady state late phase of the reaction, but, as during baseline, clearance decreased as r increased. The endotoxin reaction was similar to the reaction to infusing whole Pseudomonas bacteria, except that endotoxin had less effect on pressures during the steady state response and caused a relatively larger increase in lymph clearance of large proteins. We conclude that E. coli endotoxin in sheep causes a long period of increased lung vascular permeability and may have a greater effect on large solute pathways across microvessels than do Pseudomonas bacteria.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D008196 Lymph The interstitial fluid that is in the LYMPHATIC SYSTEM. Lymphs
D008208 Lymphatic System A system of organs and tissues that process and transport immune cells and LYMPH. Lymphatic Systems
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011552 Pseudomonas Infections Infections with bacteria of the genus PSEUDOMONAS. Infections, Pseudomonas,Pseudomonas aeruginosa Infection,Infection, Pseudomonas,Pseudomonas Infection,Pseudomonas aeruginosa Infections
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities

Related Publications

K L Brigham, and R Bowers, and J Haynes
November 1975, Circulation research,
K L Brigham, and R Bowers, and J Haynes
October 1974, The Journal of clinical investigation,
K L Brigham, and R Bowers, and J Haynes
March 1992, Research in veterinary science,
K L Brigham, and R Bowers, and J Haynes
June 1978, Nihon Kyobu Shikkan Gakkai zasshi,
K L Brigham, and R Bowers, and J Haynes
October 1986, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
K L Brigham, and R Bowers, and J Haynes
November 1981, The Journal of clinical investigation,
K L Brigham, and R Bowers, and J Haynes
March 1988, Journal of applied physiology (Bethesda, Md. : 1985),
K L Brigham, and R Bowers, and J Haynes
May 1963, Magyar noorvosok lapja,
Copied contents to your clipboard!