Inhibition of the acute toxicity of methyl chloride in male B6C3F1 mice by glutathione depletion. 1986

G J Chellman, and R D White, and R M Norton, and J S Bus

Previous data have demonstrated that methyl chloride (MeCl) is toxic to B6C3F1 mice under both acute and chronic exposure conditions, and that conjugation of MeCl with glutathione (GSH) is a key step in the metabolism of MeCl. This study examined the role of GSH in mediating the acute toxicity of MeCl to liver, kidney, and brain of male B6C3F1 mice. The lethal effects of a single 6-hr inhalation exposure of B6C3F1 males to 2500 ppm MeCl were completely prevented by pretreatment with the GSH synthesis inhibitor, L-buthionine-S,R-sulfoximine (4 mmol L-BSO/kg, ip 1.5 hr prior to MeCl exposure). GSH levels (measured as nonprotein sulfhydryl) in liver and kidney were depleted to 19 and 25% of control values, respectively, at the start of the exposure; the ratio of dead/exposed mice during the 18-hr postexposure declined from 14/15 mice to 0/10. Also, the LC50 for MeCl increased from 2200 to 3200 ppm in male mice pretreated with BSO. The hepatic toxicity of MeCl was detected by increased alanine aminotransferase (ALT) activities in serum 18 hr after a 6-hr exposure to 1500 ppm MeCl (2147 +/- 1327 IU/liter vs 46 +/- 6 in controls). Liver toxicity was inhibited when B6C3F1 males were depleted of GSH prior to MeCl exposure by BSO pretreatment (43 +/- 2), fasting (100 +/- 47), or injection of diethyl maleate (42 +/- 16). The effects of GSH depletion on MeCl toxicity to brain and kidney were determined in B6C3F1 males exposed to 1500 ppm MeCl 6 hr/day, 5 days/week for 2 weeks, with and without daily pretreatment with 2 mmol L-BSO/kg. This dose of BSO depleted hepatic and renal GSH by 28 and 60%, respectively, at the start of MeCl exposure. BSO-pretreated mice were protected from the central nervous system toxicity of MeCl, as assessed by microscopic examination of the granule cell layer of the cerebellum. BSO pretreatment also inhibited the renal toxicity of MeCl as measured by incorporation of [3H]thymidine ([3H]TdR) into renal DNA, an indicator of cell regeneration after cortical necrosis. [3H]TdR incorporation was 105 +/- 10,337 +/- 40, and 60 +/- 15 dpm/microgram DNA in nonexposed controls, MeCl, and MeCl + BSO treatment groups, respectively. These results indicate that GSH is an important component in the toxicity of MeCl to multiple organ systems in B6C3F1 mice. Reaction of MeCl with GSH appears to constitute a mechanism of toxication, contrary to the role usually proposed for GSH in detoxifying xenobiotics.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007677 Kidney Function Tests Laboratory tests used to evaluate how well the kidneys are working through examination of blood and urine. Function Test, Kidney,Function Tests, Kidney,Kidney Function Test,Test, Kidney Function,Tests, Kidney Function
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008658 Inactivation, Metabolic Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion. Detoxication, Drug, Metabolic,Drug Detoxication, Metabolic,Metabolic Detoxication, Drug,Detoxification, Drug, Metabolic,Metabolic Detoxification, Drug,Metabolic Drug Inactivation,Detoxication, Drug Metabolic,Detoxication, Metabolic Drug,Detoxification, Drug Metabolic,Drug Inactivation, Metabolic,Drug Metabolic Detoxication,Drug Metabolic Detoxification,Inactivation, Metabolic Drug,Metabolic Drug Detoxication,Metabolic Inactivation
D008717 Methionine Sulfoximine Sulfoximine, Methionine
D008737 Methyl Chloride A hydrocarbon used as an industrial solvent. It has been used as an aerosal propellent, as a refrigerant and as a local anesthetic. (From Martindale, The Extra Pharmacopoeia, 31st ed, p1403) Chloromethane,Chloride, Methyl
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females

Related Publications

G J Chellman, and R D White, and R M Norton, and J S Bus
March 1984, Toxicology and applied pharmacology,
G J Chellman, and R D White, and R M Norton, and J S Bus
January 1989, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement,
G J Chellman, and R D White, and R M Norton, and J S Bus
January 1989, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement,
G J Chellman, and R D White, and R M Norton, and J S Bus
January 1990, Fundamental and applied toxicology : official journal of the Society of Toxicology,
G J Chellman, and R D White, and R M Norton, and J S Bus
September 1986, Toxicology and applied pharmacology,
G J Chellman, and R D White, and R M Norton, and J S Bus
February 1947, The Journal of industrial hygiene and toxicology,
G J Chellman, and R D White, and R M Norton, and J S Bus
July 1994, Toxicology letters,
G J Chellman, and R D White, and R M Norton, and J S Bus
January 1989, Biochemical pharmacology,
G J Chellman, and R D White, and R M Norton, and J S Bus
September 1995, Research communications in molecular pathology and pharmacology,
G J Chellman, and R D White, and R M Norton, and J S Bus
May 1995, The Journal of toxicological sciences,
Copied contents to your clipboard!