Cerebral glucose metabolism during the recovery period after ischemia--its relationship to NADH-fluorescence, blood flow, EcoG and histology. 1986

K Tanaka, and E Dora, and J H Greenberg, and M Reivich

Local cerebral glucose utilization (lCMRgl), NADH fluorescence, cerebral blood flow (CBF), electrocortical activity (ECoG) and histology were studied during a 4 hr recovery period following 2 hrs of left middle cerebral artery (MCA) occlusion in cats. Changes in relative reduced pyridine nucleotides and CBF were measured by fluororeflectometry, ECoG was obtained from the left middle ectosylvian gyrus (MEG), and lCMRgl was measured at the end of the recovery period autoradiographically with 14-C-2-deoxyglucose. A sham group was comprised of 4 cats. The ten animals subjected to the stroke were classified into 3 groups based on the mean amplitude of the ECoG at the end of the ischemic period. At the end of the recovery period, the relative reduced pyridine nucleotides showed a 22.5% oxidation (oxidation of NADH), a 66.2% reduction (reduction of NAD) and a 3.0% reduction compared to the sham group in the severe, moderate and mild groups, respectively. LCMRgl of the left MEG in the severe group was 64.2% of the corresponding sham value, whereas lCMRgl in the moderate and mild groups were 124.8% and 132.0% of the sham, respectively. CBF at the end of the recovery period ranged from 28.1% to 83.0% of the sham value, although there was no significant difference among these groups. Histologically, a large portion of the neurons in the left MEG in the severe group showed ischemic neuronal changes, while the damage was less severe in the moderate and mild groups. On the basis of these data, it is suggested that a relative substrate deficiency and/or a loss of mitochondrial enzymatic pool size may occur in the animals comprizing the severe group. Conversely, anaerobic glycolysis may be activated in the moderate group, while the mild group exhibits an increase in glucose metabolism that is most likely aerobic. A gradient in the magnitude of changes in lCMRgl was noted from the central MCA territory to the surrounding brain regions in the ischemic hemisphere. In addition, there was a mild, but statistically significant (p less than 0.05), depression in lCMRgl with no histological damage in the non-ischemic hemisphere of the severe group.

UI MeSH Term Description Entries
D008297 Male Males
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002546 Ischemic Attack, Transient Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6) Brain Stem Ischemia, Transient,Cerebral Ischemia, Transient,Crescendo Transient Ischemic Attacks,Transient Ischemic Attack,Anterior Circulation Transient Ischemic Attack,Brain Stem Transient Ischemic Attack,Brain TIA,Brainstem Ischemia, Transient,Brainstem Transient Ischemic Attack,Carotid Circulation Transient Ischemic Attack,Posterior Circulation Transient Ischemic Attack,TIA (Transient Ischemic Attack),Transient Ischemic Attack, Anterior Circulation,Transient Ischemic Attack, Brain Stem,Transient Ischemic Attack, Brainstem,Transient Ischemic Attack, Carotid Circulation,Transient Ischemic Attack, Posterior Circulation,Transient Ischemic Attack, Vertebrobasilar Circulation,Transient Ischemic Attacks, Crescendo,Vertebrobasilar Circulation Transient Ischemic Attack,Attack, Transient Ischemic,Attacks, Transient Ischemic,Brainstem Ischemias, Transient,Cerebral Ischemias, Transient,Ischemia, Transient Brainstem,Ischemia, Transient Cerebral,Ischemias, Transient Brainstem,Ischemias, Transient Cerebral,Ischemic Attacks, Transient,TIA, Brain,TIAs (Transient Ischemic Attack),Transient Brainstem Ischemia,Transient Cerebral Ischemia,Transient Cerebral Ischemias,Transient Ischemic Attacks
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005470 Fluorometry An analytical method for detecting and measuring FLUORESCENCE in compounds or targets such as cells, proteins, or nucleotides, or targets previously labeled with FLUORESCENCE AGENTS. Fluorimetry,Fluorometric Analysis,Analysis, Fluorometric

Related Publications

K Tanaka, and E Dora, and J H Greenberg, and M Reivich
March 1993, Stroke,
K Tanaka, and E Dora, and J H Greenberg, and M Reivich
January 1977, Acta neurologica Scandinavica. Supplementum,
K Tanaka, and E Dora, and J H Greenberg, and M Reivich
October 1959, The American journal of physiology,
K Tanaka, and E Dora, and J H Greenberg, and M Reivich
May 1982, Annals of neurology,
K Tanaka, and E Dora, and J H Greenberg, and M Reivich
June 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
K Tanaka, and E Dora, and J H Greenberg, and M Reivich
May 1991, Stroke,
K Tanaka, and E Dora, and J H Greenberg, and M Reivich
January 1994, Journal of neurosurgical anesthesiology,
K Tanaka, and E Dora, and J H Greenberg, and M Reivich
November 1993, Nihon rinsho. Japanese journal of clinical medicine,
K Tanaka, and E Dora, and J H Greenberg, and M Reivich
July 1980, Acta physiologica Scandinavica,
Copied contents to your clipboard!