circFNDC3B promotes esophageal squamous cell carcinoma progression by targeting MYO5A via miR-370-3p/miR-136-5p. 2023

Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, No.42, Baiziting, Nanjing, 210009, Jinagsu Province, China. songdan@jszlyy.com.cn.

BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor worldwide. Circular RNA (circRNA) is of great value in tumorigenesis progression. However, the mechanism of circFNDC3B in ESCC remains to be clarified. METHODS Firstly, the circular characteristics of circFNDC3B were evaluated by Actinomycin D and RNase R measurements. The functions of circFNDC3B in ESCC cells were examined by CCK-8, EdU and flow cytometry. Subsequently, the molecular mechanism of circFNDC3B was explained using luciferase reporter gene detection. Finally, we constructed xenograft model to prove the role of circFNDC3B in vivo. RESULTS Our study revealed that circFNDC3B was more stable than its linear RNA and prominently upregulated in ESCC. Functional findings suggested that silencing of circFNDC3B reduced the proliferation and enhanced apoptosis of ESCC cells in vitro. Meanwhile, knockdown of circFNDC3B attenuated tumor progression in vivo. Next, miR-370-3p/miR-136-5p was discovered to bind circFNDC3B. miR-370-3p/miR-136-5p reversed the promotive effect on cell proliferation and the inhibitory effect on cell apoptosis of circFNDC3B. MYO5A was a downstream target of miR-370-3p/miR-136-5p. CircFNDC3B served as a sponge for miR-370-3p/miR-136-5p and alleviated the prohibitory effect of miR-370-3p/miR-136-5p on MYO5A, which accelerated ESCC progression. CONCLUSIONS circFNDC3B positively adjusted the MYO5A expression via spongy miR-370-3p/miR-136-5p, hence achieving the cancer-promoting effect on ESCC. circFNDC3B was a prospective diagnosis marker for ESCC.

UI MeSH Term Description Entries
D011446 Prospective Studies Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group. Prospective Study,Studies, Prospective,Study, Prospective
D004938 Esophageal Neoplasms Tumors or cancer of the ESOPHAGUS. Cancer of Esophagus,Esophageal Cancer,Cancer of the Esophagus,Esophagus Cancer,Esophagus Neoplasm,Neoplasms, Esophageal,Cancer, Esophageal,Cancer, Esophagus,Cancers, Esophageal,Cancers, Esophagus,Esophageal Cancers,Esophageal Neoplasm,Esophagus Cancers,Esophagus Neoplasms,Neoplasm, Esophageal,Neoplasm, Esophagus,Neoplasms, Esophagus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077277 Esophageal Squamous Cell Carcinoma A carcinoma that originates usually from cells on the surface of the middle and lower third of the ESOPHAGUS. Tumor cells exhibit typical squamous morphology and form large polypoid lesions. Mutations in RNF6, LZTS1, TGFBR2, DEC1, and WWOX1 genes are associated with this cancer. Oesophageal Squamous Cell Carcinoma
D000079962 RNA, Circular RNA molecules in which the 3' and 5' ends are covalently joined to form a closed continuous loop. They are resistant to digestion by EXORIBONUCLEASES. Circular Intronic RNA,Circular RNA,Circular RNAs,Closed Circular RNA,ciRNA,circRNA,circRNAs,Circular RNA, Closed,Intronic RNA, Circular,RNA, Circular Intronic,RNA, Closed Circular,RNAs, Circular
D017930 Genes, Reporter Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest. Reporter Genes,Gene, Reporter,Reporter Gene
D018995 Myosin Heavy Chains The larger subunits of MYOSINS. The heavy chains have a molecular weight of about 230 kDa and each heavy chain is usually associated with a dissimilar pair of MYOSIN LIGHT CHAINS. The heavy chains possess actin-binding and ATPase activity. Myosin Heavy Chain,Heavy Chain, Myosin,Heavy Chains, Myosin
D024701 Myosin Type V A subclass of myosin involved in organelle transport and membrane targeting. It is abundantly found in nervous tissue and neurosecretory cells. The heavy chains of myosin V contain unusually long neck domains that are believed to aid in translocating molecules over large distances. Myosin V,Myosin-V p190,Myosin V p190
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
October 2023, Biochemical genetics,
Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
June 2020, Archives of biochemistry and biophysics,
Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
November 2020, DNA and cell biology,
Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
May 2022, Cancers,
Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
January 2024, Biochemical genetics,
Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
May 2021, Aging,
Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
January 2021, OncoTargets and therapy,
Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
September 2021, Journal of thoracic disease,
Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
December 2019, Cancer biotherapy & radiopharmaceuticals,
Dan Song, and Ziqi Ye, and Fangyu Chen, and Liangliang Zhan, and Xinchen Sun
April 2022, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!