Ultrastructural localization of guinea pig spermatozoal autoantigens on germinal cells by immunoperoxidase techniques. 1979

P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin

Three guinea pig spermatozoal autoantigens S, P and T, each one able to induce autoimmune aspermatogenic orchiepididymitis and autoantibodies, were ultrastructurally localized in male germinal cells by immunoperoxidase techniques. Both living and prefixed sectioned cell preparations were treated and examined. Fab antibody fragments were used to study intracellular antigens (whole antibodies were inefficient). Water-soluble S and P autoantigens were found in acrosomal structures in the same sites: proacrosomal and acrosomal granules of the young spermatids, on the head caps of spermatids and acrosomal cap of spermatozoa, along the inner and outer acrosomal membranes and in the outer zone of the acrosomal matrix of the same cells. S was never found in the inner zone of spermatid or spermatozoa acrosomes, while P was present in this inner zone, but only of young spermatids. Water-insoluble T autoantigen was found on the plasmalemma and outer acrosomal membranes of spermatids and spermatozoa, inside the spermatid cytoplasm and, sometimes, on the inner acrosomal membrane of young spermatids. The specificity of the immunological localization for each antigen was confirmed by testing with specific antisera following absorption with homologous and heterologous antigens. No other testicular cell type (including Sertoli cells per se) was found to bear S, P or T autoantigens. When use was made of autoimmune sera obtained through autologous whole spermatozoa, the observed staining was an additive combination of what was observed when using the preceding three immune sera, anti-S, anti-P and anti-T.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013087 Spermatids Male germ cells derived from the haploid secondary SPERMATOCYTES. Without further division, spermatids undergo structural changes and give rise to SPERMATOZOA. Spermatoblasts,Spermatid,Spermatoblast
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
April 1973, Immunology,
P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
February 1982, The Anatomical record,
P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
November 1981, Acta virologica,
P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
June 1982, The Journal of general virology,
P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
July 1972, Immunology,
P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
February 1974, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
March 1982, Biology of reproduction,
P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
January 1979, The Journal of general virology,
P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
January 1982, Archives of virology,
P P Le Bouteiller, and F Toullet, and S Righenzi, and G A Voisin
April 1990, The Anatomical record,
Copied contents to your clipboard!