Occurrence of 4-hydroxyalkenals in rat tissues determined as pentafluorobenzyl oxime derivatives by gas chromatography-mass spectrometry. 1986

F J van Kuijk, and D W Thomas, and R J Stephens, and E A Dratz

Malondialdehyde measurements have been the major tool for studying relationships between lipid peroxidation and tissue pathology. Recently, we presented a novel gas chromatography-mass spectrometry method for direct detection of phospholipid peroxides with picogram sensitivity based on transesterification of phospholipids or triglycerides to form pentafluorobenzyl esters. Under some circumstances the reactive primary oxidation products break down. Therefore, we developed a convenient, high sensitivity method to detect more stable secondary lipid oxidation products, the 4-hydroxyalkenals. The method accomplishes a facile extraction of 4-hydroxynonenal from tissues by forming pentafluorobenzyl oxime derivatives to displace aldehydes from Schiff base linkages. 4-hydroxynonenal was found in heart, liver, adrenal, and testis from rats and was detected to the 10-100 pg level by the current method.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D010091 Oximes Compounds that contain the radical R2C Aldoximes,Hydroxyimino Compounds,Ketoxime,Ketoximes,Oxime,Compounds, Hydroxyimino
D006898 Hydroxylamines Organic compounds that contain the (-NH2OH) radical.
D000447 Aldehydes Organic compounds containing a carbonyl group in the form -CHO. Aldehyde
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F J van Kuijk, and D W Thomas, and R J Stephens, and E A Dratz
January 2017, Talanta,
F J van Kuijk, and D W Thomas, and R J Stephens, and E A Dratz
July 2004, Journal of chromatography. A,
F J van Kuijk, and D W Thomas, and R J Stephens, and E A Dratz
March 1981, Biomedical mass spectrometry,
F J van Kuijk, and D W Thomas, and R J Stephens, and E A Dratz
January 1995, Journal of the American Society for Mass Spectrometry,
F J van Kuijk, and D W Thomas, and R J Stephens, and E A Dratz
February 2009, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
F J van Kuijk, and D W Thomas, and R J Stephens, and E A Dratz
November 1985, Journal of chromatography,
Copied contents to your clipboard!