Stimulation of tyrosine-specific protein phosphorylation in the rat liver plasma membrane by oxygen radicals. 1986

T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein

Incorporation of 32P from [gamma-32P]ATP into endogenous proteins, added histone and the copolymers Glu 80 Tyr 20 by rat liver plasma membranes was markedly increased by several naphthoquinones, including menadione. This stimulation was most marked with Glu 80 Tyr 20, has an absolute requirement for either dithiothreitol or reduced glutathione, and was inhibited by superoxide dismutase, catalase, and desferrioxamine to varying degrees depending on the quinones used. Their effectiveness in stimulating the apparent tyrosine-specific protein phosphorylation correlated with the rates of DTT-dependent redox cycling measured by oxygen consumption. Increased protein phosphorylation was also seen with particulate fractions isolated from hepatocytes incubated with quinones. A free radical-mediated mechanism is suggested for the quinone stimulation of protein phosphorylation.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009285 Naphthoquinones Naphthalene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups. Naphthalenediones,Naphthazarins,Naphthoquinone
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical

Related Publications

T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
November 1989, Archives of biochemistry and biophysics,
T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
October 1971, Biochemical and biophysical research communications,
T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
October 1985, FEBS letters,
T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
February 2000, Journal of immunology (Baltimore, Md. : 1950),
T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
September 1994, The American journal of physiology,
T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
January 1988, Free radical biology & medicine,
T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
April 2000, The Biochemical journal,
T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
August 1991, Science (New York, N.Y.),
T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
February 1982, Nature,
T M Chan, and E Chen, and A Tatoyan, and N S Shargill, and M Pleta, and P Hochstein
September 1981, Kidney international,
Copied contents to your clipboard!