Properties of human liver lysosomal sialidase. 1986

J C Michalski, and A P Corfield, and R Schauer

Sialidase in human liver was localized predominantly in the lysosomal fraction. Microsomal and nuclear fractions contained some activity but no cytosolic enzyme could be detected. The lysosomal enzyme fraction is active with gangliosides, fetuin, mucus glycoprotein, sialyllactose and other sialyloligosaccharides. The preferred rate of enzymic hydrolysis of sialyl linkages is alpha(2-3) greater than alpha(2-6) greater than alpha(2-8) and this is governed by the Vmax values, as Km values were similar for all substrates tested. N-Acetyl-neuraminic acid is released faster than N-glycoloylneuraminic acid. Using the inhibitors N-acetyl-2-deoxy-2,3-didehydroneuraminic acid and N-(4-nitrophenyl)oxamic acid with selected substrates the existence of at least two types of sialidase activity could be demonstrated. One is active preferentially with gangliosides and sialyllactose and the other with fetuin and sialyhexasaccharides. Strong inhibition by Cu2+ and Hg2+ was found with ganglioside and sialyllactose as substrates. The presence of a sialate O-acetylesterase acting on hematoside containing N-glycoloyl-4-O-acetylneuraminic acid was established.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D004950 Esterases Any member of the class of enzymes that catalyze the cleavage of an ester bond and result in the addition of water to the resulting molecules. Esterase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

J C Michalski, and A P Corfield, and R Schauer
December 1993, Journal of biochemistry,
J C Michalski, and A P Corfield, and R Schauer
October 1988, Chemical & pharmaceutical bulletin,
J C Michalski, and A P Corfield, and R Schauer
May 1984, European journal of biochemistry,
J C Michalski, and A P Corfield, and R Schauer
January 2013, Journal of cellular biochemistry,
J C Michalski, and A P Corfield, and R Schauer
August 1989, European journal of biochemistry,
J C Michalski, and A P Corfield, and R Schauer
January 2008, Bioorganic & medicinal chemistry letters,
J C Michalski, and A P Corfield, and R Schauer
November 2003, Gene,
J C Michalski, and A P Corfield, and R Schauer
December 2023, Glycoconjugate journal,
Copied contents to your clipboard!