3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine photolabels a substrate-binding site of rat hepatic cytochrome P-450 form PB-4. 1986

A B Frey, and G Kreibich, and A B Wadhera, and L Clarke, and D J Waxman

Hepatic microsomes isolated from untreated male rats or from rats pretreated with phenobarbital (PB) or 3-methylcholanthrene (3-MC) were labeled with the hydrophobic, photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID incorporation into 3-MC- and PB-induced liver microsomal protein was enhanced 5- and 8-fold, respectively, relative to the incorporation of [125I]TID into uninduced liver microsomes. The major hepatic microsomal cytochrome P-450 forms inducible by PB and 3-MC, respectively designated P-450s PB-4 and BNF-B, were shown to be the principal polypeptides labeled by [125I]TID in the correspondingly induced microsomes. Trypsin cleavage of [125I]TID-labeled microsomal P-450 PB-4 yielded several radiolabeled fragments, with a single labeled peptide of Mr approximately 4000 resistant to extensive proteolytic digestion. The following experiments suggested that TID binds to the substrate-binding site of P-450 PB-4. [125I]TID incorporation into microsomal P-450 PB-4 was inhibited in a dose-dependent manner by the P-450 PB-4 substrate benzphetamine. In the absence of photoactivation, TID inhibited competitively about 80% of the cytochrome P-450-dependent 7-ethoxycoumarin O-deethylation catalyzed by PB-induced microsomes with a Ki of 10 microM; TID was a markedly less effective inhibitor of the corresponding activity catalyzed by microsomes isolated from uninduced or beta-naphthoflavone-induced livers.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001389 Azirines Unsaturated azacyclopropane compounds that are three-membered heterocycles of a nitrogen and two carbon atoms. Azacyclopropanes, Unsaturated,Unsaturated Azacyclopropanes

Related Publications

A B Frey, and G Kreibich, and A B Wadhera, and L Clarke, and D J Waxman
March 1991, Analytical biochemistry,
A B Frey, and G Kreibich, and A B Wadhera, and L Clarke, and D J Waxman
December 1982, The Journal of biological chemistry,
A B Frey, and G Kreibich, and A B Wadhera, and L Clarke, and D J Waxman
December 1981, Biochemistry,
A B Frey, and G Kreibich, and A B Wadhera, and L Clarke, and D J Waxman
December 1997, Analytical biochemistry,
A B Frey, and G Kreibich, and A B Wadhera, and L Clarke, and D J Waxman
November 1991, The Journal of biological chemistry,
A B Frey, and G Kreibich, and A B Wadhera, and L Clarke, and D J Waxman
January 1988, Biochimica et biophysica acta,
Copied contents to your clipboard!