Interaction of tubulin with octyl glucoside and deoxycholate. 2. Protein conformation, binding of colchicine ligands, and microtubule assembly. 1986

J M Andreu, and J de la Torre, and J L Carrascosa

The structural change induced by binding of mild detergents to cytoplasmic calf brain tubulin and the effects on the functional properties of this protein have been characterized. Massive binding of octyl glucoside or deoxycholate monomers induces circular dichroism changes indicating a partial alpha-helix to disordered structure transition of tubulin. The protein also becomes more accessible to controlled proteolysis by trypsin, thermolysin, or V8 protease. This is consistent with the looser protein structure proposed in previous binding and hydrodynamic studies [Andreu, J. M., & Muñoz, J. A. (1986) Biochemistry (preceding paper in this issue)]. Micelles of octyl glucoside and deoxycholate bind colchicine and its analogue 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC). This impedes the determination of colchicine binding in the presence of detergents. Both detergents cause a reduction in the number of tubulin equilibrium binding sites for the colchicine site probe MTC. Deoxycholate monomers bind poorly to the tubulin-colchicine complex, but deoxycholate above the critical micelle concentration effectively dissociates the complex. Microtubule assembly in glycerol-containing buffer is inhibited by octyl glucoside, which raises the critical protein concentration. Low concentrations of deoxycholate enhance tubulin polymerization, allowing it to proceed without glycerol. The polymers formed are microtubules, pairwise associated open microtubular sheets, and macrotubules possibly generated by helical folding of the sheets, as indicated by the optical diffraction patterns. Saturation of tubulin with octyl glucoside, followed by full dissociation of the detergent, allowed the recovery of binding to the colchicine site and microtubule assembly, indicating the reversibility of the protein structural change.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer

Related Publications

J M Andreu, and J de la Torre, and J L Carrascosa
September 1986, Biochemistry,
J M Andreu, and J de la Torre, and J L Carrascosa
October 2015, Biochemical and biophysical research communications,
J M Andreu, and J de la Torre, and J L Carrascosa
March 1981, Biochemistry,
J M Andreu, and J de la Torre, and J L Carrascosa
March 1983, Biochemistry,
J M Andreu, and J de la Torre, and J L Carrascosa
October 1980, Archives of biochemistry and biophysics,
J M Andreu, and J de la Torre, and J L Carrascosa
July 1980, FEBS letters,
J M Andreu, and J de la Torre, and J L Carrascosa
April 1977, Journal of molecular biology,
J M Andreu, and J de la Torre, and J L Carrascosa
October 1989, The Journal of biological chemistry,
J M Andreu, and J de la Torre, and J L Carrascosa
February 1983, The Journal of biological chemistry,
Copied contents to your clipboard!