Regulation of eukaryotic ribosomal RNA transcription by RNA polymerase modification. 1986

E Bateman, and M R Paule

Forms of RNA polymerase I prepared from growing or encysted Acanthamoeba are equal in the ability to transcribe poly(dl:dC). Polymerase from cysts, whose rRNA genes are transcriptionally inactive, is unable to utilize the rDNA promoter in vitro, whereas the transcription initiation factor from cysts is fully able to bind the promoter and direct transcription. Footprinting shows that polymerase from cysts is functionally inactive because of its inability to bind to the promoter. The polymerase footprint moves downstream the appropriate number of base pairs upon various nucleotide additions, without affecting the factor footprint. These results support our hypothesis that rRNA synthesis in eukaryotes is regulated by polymerase I modification and not by alterations to additional DNA-binding proteins.

UI MeSH Term Description Entries
D011070 Poly I-C Interferon inducer consisting of a synthetic, mismatched double-stranded RNA. The polymer is made of one strand each of polyinosinic acid and polycytidylic acid. Poly(I-C),Poly(rI).Poly(rC),Polyinosinic-Polycytidylic Acid,Polyinosinic-Polycytidylic Acid (High MW),Polyriboinosinic-Polyribocytidylic Acid,Polyribose Inosin-Cytidil,Inosin-Cytidil, Polyribose,Poly I C,Polyinosinic Polycytidylic Acid,Polyriboinosinic Polyribocytidylic Acid,Polyribose Inosin Cytidil
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D000656 Amoeba A genus of ameboid protozoa. Characteristics include a vesicular nucleus and the formation of several PSEUDOPODIA, one of which is dominant at a given time. Reproduction occurs asexually by binary fission. Ameba
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012318 RNA Polymerase I A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. The enzyme functions in the nucleolar structure and transcribes DNA into RNA. It has different requirements for cations and salts than RNA polymerase II and III and is not inhibited by alpha-amanitin. DNA-Dependent RNA Polymerase I,RNA Polymerase A,DNA Dependent RNA Polymerase I,Polymerase A, RNA,Polymerase I, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

E Bateman, and M R Paule
December 1985, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
E Bateman, and M R Paule
January 1999, Progress in nucleic acid research and molecular biology,
E Bateman, and M R Paule
January 1994, Molekuliarnaia biologiia,
E Bateman, and M R Paule
April 1986, Molecular and cellular biochemistry,
E Bateman, and M R Paule
January 1995, Progress in nucleic acid research and molecular biology,
E Bateman, and M R Paule
January 2013, Biochimica et biophysica acta,
E Bateman, and M R Paule
January 1986, Annual review of biochemistry,
E Bateman, and M R Paule
January 1994, Results and problems in cell differentiation,
E Bateman, and M R Paule
November 1989, Biochimica et biophysica acta,
Copied contents to your clipboard!