Formation of acetylcholine receptor clusters in mammalian sternohyoid muscle regenerating in the absence of nerves. 1986

F M Hansen-Smith

When the sternohyoid muscle from the rat is grafted, the original muscle fibers, including the membranes at the neuromuscular junction, degenerate irreversibly. New muscle fibers regenerate inside of the basal laminae remaining from the original muscle fibers. In this study rhodamine-alpha-bungarotoxin and electron microscopy have been used to demonstrate that acetylcholine receptor (AchR) clusters and synaptic folds are restored to the regenerating myotubes even when innervation to the grafts is prevented. The AchR clusters and synaptic folds colocalized with acetylcholinesterase that persisted at the original synaptic basal lamina. The AchR clusters were not restored if the original innervation band was removed from the muscle at the time of grafting. Lengths of the AchR clusters were measured in animals ranging in weight from 50 to 700 g. The lengths of clusters in the grafts were proportional to the lengths of those in the preoperative controls, suggesting that quantitative morphogenetic information persists through the period of degeneration and regeneration. However, the distribution of the AchRs within the clusters differed slightly from controls. Extrajunctional AchR clusters were present initially, but later disappeared. The sizes of these clusters were unrelated to the sizes of the junctional AchR clusters. This study demonstrates that morphogenetic cues persist within the region of the original motor and plate, possibly associated with the synaptic basal lamina.

UI MeSH Term Description Entries
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D003472 Curare Plant extracts from several species, including genera STRYCHNOS and Chondodendron, which contain TETRAHYDROISOQUINOLINES that produce PARALYSIS of skeletal muscle. These extracts are toxic and must be used with the administration of artificial respiration.
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

F M Hansen-Smith
February 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F M Hansen-Smith
April 1974, The Journal of physiology,
F M Hansen-Smith
February 1958, The Journal of physiology,
F M Hansen-Smith
January 1983, Cold Spring Harbor symposia on quantitative biology,
F M Hansen-Smith
September 1967, The Journal of physiology,
Copied contents to your clipboard!