Monovalent ionophores inhibit secretion of procollagen and fibronectin from cultured human fibroblasts. 1979

N Uchida, and H Smilowitz, and M L Tanzer

Procollagen and fibronectin are major products of confluent fibroblasts in culture and both are released from the cells. Procollagen is secreted by known pathways, while the mechanism of fibronectin release is controversial. We find that the secretion of both these proteins can be reduced to 20% by low concentrations (0.1-1 muM) of ionophores that have affinity for monovalent cations. In contrast, little effect upon secretion was found for similar concentrations of an ionophore that binds divalent cations. Electron microscopy showed that the inhibition of secretion is accompanied by accumulation of membranous vacuoles. We believe that the ionophores impede secretion by acting on the secretory structures rather than on the proteins themselves. Biochemical studies supported this interpretation because no changes were detected in hydroxylation or glycosylation of procollagen or glycosylation of fibronectin, nor were significant changes in cellular amino acid incorporation observed. Pulse-chase studies indicated that the rates of secretion were impaired by the ionophore without enhancing intracellular degradation. The decreased secretory rates accounted for the lower levels of procollagen and fibronectin in the culture medium; no evidence for increased catabolism of the secreted proteins was found. Secretion could be readily restored by removing the ionophore from the culture medium. The results indicate that procollagen and fibronectin may be simultaneously secreted, possibly utilizing a common pathway for secretion; the ionophores effectively interfere with cellular secretory pathways without impairing protein synthesis or protein glycosylation or altering protein catabolism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007832 Lasalocid Cationic ionophore antibiotic obtained from Streptomyces lasaliensis that, among other effects, dissociates the calcium fluxes in muscle fibers. It is used as a coccidiostat, especially in poultry. Avatec,Lasalocid A,Ro 2-2985,X-537A,Ro 2 2985,Ro 22985,X 537A,X537A
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008985 Monensin An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts' development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies. Coban,Monensin Monosodium Salt,Monensin Sodium,Monensin-A-Sodium Complex,Rumensin,Monensin A Sodium Complex
D009550 Nigericin A polyether antibiotic which affects ion transport and ATPase activity in mitochondria. It is produced by Streptomyces hygroscopicus. (From Merck Index, 11th ed) Epinigericin,Pandavir
D011347 Procollagen A biosynthetic precursor of collagen containing additional amino acid sequences at the amino-terminal and carboxyl-terminal ends of the polypeptide chains. Protocollagen,Procollagen Type M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005663 Furans Compounds with a 5-membered ring of four carbons and an oxygen. They are aromatic heterocycles. The reduced form is tetrahydrofuran. Tetrahydrofurans

Related Publications

N Uchida, and H Smilowitz, and M L Tanzer
July 1979, Molecular pharmacology,
N Uchida, and H Smilowitz, and M L Tanzer
February 1973, Proceedings of the National Academy of Sciences of the United States of America,
N Uchida, and H Smilowitz, and M L Tanzer
March 1981, Biochimica et biophysica acta,
N Uchida, and H Smilowitz, and M L Tanzer
November 1982, Experimental cell research,
N Uchida, and H Smilowitz, and M L Tanzer
June 2017, Tissue engineering and regenerative medicine,
N Uchida, and H Smilowitz, and M L Tanzer
February 1990, Journal of cardiovascular pharmacology,
N Uchida, and H Smilowitz, and M L Tanzer
March 1987, Experimental cell research,
N Uchida, and H Smilowitz, and M L Tanzer
October 1991, The Biochemical journal,
N Uchida, and H Smilowitz, and M L Tanzer
October 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!