Synthetic multi-contrast late gadolinium enhancement imaging using post-contrast magnetic resonance fingerprinting. 2024

Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.

Late gadolinium enhancement (LGE) MRI is the non-invasive reference standard for identifying myocardial scar and fibrosis but has limitations, including difficulty delineating subendocardial scar and operator dependence on image quality. The purpose of this work is to assess the feasibility of generating multi-contrast synthetic LGE images from post-contrast T1 and T2 maps acquired using magnetic resonance fingerprinting (MRF). Fifteen consecutive patients with a history of prior ischemic cardiomyopathy (12 men; mean age 63   13 years) were prospectively scanned at 1.5 T between Oct 2020 and May 2021 using conventional LGE and MRF after injection of gadolinium contrast. Three classes of synthetic LGE images were derived from MRF post-contrast T1 and T2 maps: bright-blood phase-sensitive inversion recovery (PSIR), black- and gray-blood T2 -prepared PSIR (T2 -PSIR), and a novel "tissue-optimized" image to enhance differentiation among scar, viable myocardium, and blood. Image quality was assessed on a 1-5 Likert scale by two cardiologists, and contrast was quantified as the mean absolute difference (MAD) in pixel intensities between two tissues, with different methods compared using Kruskal-Wallis with Bonferroni post hoc tests. Per-patient and per-segment scar detection rates were evaluated using conventional LGE images as reference. Image quality scores were highest for synthetic PSIR (4.0) and reference images (3.8), followed by synthetic tissue-optimized (3.3), gray-blood T2 -PSIR (3.0), and black-blood T2 -PSIR (2.6). Among synthetic images, PSIR yielded the highest myocardium/scar contrast (MAD = 0.42) but the lowest blood/scar contrast (MAD = 0.05), and vice versa for T2 -PSIR, while tissue-optimized images achieved a balance among all tissues (myocardium/scar MAD = 0.16, blood/scar MAD = 0.26, myocardium/blood MAD = 0.10). Based on reference mid-ventricular LGE scans, 13/15 patients had myocardial scar. The per-patient sensitivity/accuracy for synthetic images were the following: PSIR, 85/87%; black-blood T2 -PSIR, 62/53%; gray-blood T2 -PSIR, 100/93%; tissue optimized, 100/93%. Synthetic multi-contrast LGE images can be generated from post-contrast MRF data without additional scan time, with initial feasibility shown in ischemic cardiomyopathy patients.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D009202 Cardiomyopathies A group of diseases in which the dominant feature is the involvement of the CARDIAC MUSCLE itself. Cardiomyopathies are classified according to their predominant pathophysiological features (DILATED CARDIOMYOPATHY; HYPERTROPHIC CARDIOMYOPATHY; RESTRICTIVE CARDIOMYOPATHY) or their etiological/pathological factors (CARDIOMYOPATHY, ALCOHOLIC; ENDOCARDIAL FIBROELASTOSIS). Myocardial Disease,Myocardial Diseases,Myocardial Diseases, Primary,Myocardial Diseases, Secondary,Myocardiopathies,Primary Myocardial Disease,Cardiomyopathies, Primary,Cardiomyopathies, Secondary,Primary Myocardial Diseases,Secondary Myocardial Diseases,Cardiomyopathy,Cardiomyopathy, Primary,Cardiomyopathy, Secondary,Disease, Myocardial,Disease, Primary Myocardial,Disease, Secondary Myocardial,Diseases, Myocardial,Diseases, Primary Myocardial,Diseases, Secondary Myocardial,Myocardial Disease, Primary,Myocardial Disease, Secondary,Myocardiopathy,Primary Cardiomyopathies,Primary Cardiomyopathy,Secondary Cardiomyopathies,Secondary Cardiomyopathy,Secondary Myocardial Disease
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002921 Cicatrix The fibrous tissue that replaces normal tissue during the process of WOUND HEALING. Scars,Cicatrization,Scar,Scarring
D003287 Contrast Media Substances used to allow enhanced visualization of tissues. Radiopaque Media,Contrast Agent,Contrast Agents,Contrast Material,Contrast Materials,Radiocontrast Agent,Radiocontrast Agents,Radiocontrast Media,Agent, Contrast,Agent, Radiocontrast,Agents, Contrast,Agents, Radiocontrast,Material, Contrast,Materials, Contrast,Media, Contrast,Media, Radiocontrast,Media, Radiopaque
D005682 Gadolinium An element of the rare earth family of metals. It has the atomic symbol Gd, atomic number 64, and atomic weight 157.25. Its oxide is used in the control rods of some nuclear reactors.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D017202 Myocardial Ischemia A disorder of cardiac function caused by insufficient blood flow to the muscle tissue of the heart. The decreased blood flow may be due to narrowing of the coronary arteries (CORONARY ARTERY DISEASE), to obstruction by a thrombus (CORONARY THROMBOSIS), or less commonly, to diffuse narrowing of arterioles and other small vessels within the heart. Severe interruption of the blood supply to the myocardial tissue may result in necrosis of cardiac muscle (MYOCARDIAL INFARCTION). Heart Disease, Ischemic,Ischemia, Myocardial,Ischemic Heart Disease,Disease, Ischemic Heart,Diseases, Ischemic Heart,Heart Diseases, Ischemic,Ischemias, Myocardial,Ischemic Heart Diseases,Myocardial Ischemias

Related Publications

Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
September 1990, Investigative radiology,
Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
June 2018, Scandinavian cardiovascular journal : SCJ,
Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
February 2014, Topics in magnetic resonance imaging : TMRI,
Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
August 2019, Circulation. Arrhythmia and electrophysiology,
Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
September 2020, Heart, lung & circulation,
Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
March 2007, Herz,
Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
November 2006, Congenital heart disease,
Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
August 1992, Ophthalmology,
Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
April 1991, Ophthalmology,
Imran Rashid, and Sadeer Al-Kindi, and Varun Rajagopalan, and Jonathan Walker, and Sanjay Rajagopalan, and Nicole Seiberlich, and Jesse I Hamilton
January 2016, Advances in radiation oncology,
Copied contents to your clipboard!