Responses of spinothalamic tract cells in the cat cervical spinal cord to innocuous and graded noxious stimuli. 1986

D G Ferrington, and L S Sorkin, and W D Willis

The response properties of spinothalamic tract (STT) cells in the dorsal horn of the cervical spinal cord were examined in chloralose-anesthetized cats. The activity of 56 STT cells located in laminae IV-VI was studied, with most activity isolated in the lateral part of the dorsal horn. The level of background activity in STT cells was low (mean = 1.2 impulses/sec; n = 26). Conduction velocity estimates for STT axons ranged from 9 to 76 m/sec (mean = 38 m/sec; n = 56) and were not correlated with the recording site in the spinal cord. Most cells were antidromically activated from an electrode in the medial part of the posterior group of nuclei in the thalamus. Excitatory receptive fields were ipsilateral to the recording site, and for 38 of 40 neurons were confined to the forelimb. Although receptive fields were often restricted to part of the paw, they did not include glabrous skin. Among 31 cells classified, four groups were identified: low-threshold (LT) cells (13%) responded to pressure and brushing of the skin; high-threshold (HT) cells (13%) responded only to noxious pinching or squeezing of the skin; wide-dynamic-range (WDR) cells (58%) responded to innocuous mechanical stimuli but had a greater response to noxious stimuli; deep (D) cells (16%) responded to manipulation of subcutaneous tissues such as muscle. Heat stimuli 30 sec in duration, in the range of 43-55 degrees C, were applied to the receptive fields of 14 neurons that included representatives from all three groups with cutaneous input. Nine neurons responded to heat with thresholds that ranged from 47 degrees to 55 degrees C (mean = 51 degrees C). The responses of these nine STT cells increased with increasing stimulus intensity in the noxious range. In the cat cervical dorsal horn, STT cells can signal the occurrence of noxious stimuli on the body surface, and, judging by the sizes of their peripheral receptive fields, are capable of signaling precise information about the location of the damage. Furthermore, some cells are able to signal the intensity of a noxious heating pulse.

UI MeSH Term Description Entries
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012677 Sensation The process in which specialized SENSORY RECEPTOR CELLS transduce peripheral stimuli (physical or chemical) into NERVE IMPULSES which are then transmitted to the various sensory centers in the CENTRAL NERVOUS SYSTEM. Sensory Function,Organoleptic,Function, Sensory,Functions, Sensory,Sensations,Sensory Functions
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory

Related Publications

D G Ferrington, and L S Sorkin, and W D Willis
December 1973, Brain research,
D G Ferrington, and L S Sorkin, and W D Willis
November 2015, The Journal of sports medicine and physical fitness,
D G Ferrington, and L S Sorkin, and W D Willis
August 1982, The Journal of physiology,
D G Ferrington, and L S Sorkin, and W D Willis
September 1979, Journal of neurophysiology,
D G Ferrington, and L S Sorkin, and W D Willis
March 1988, Journal of neurophysiology,
D G Ferrington, and L S Sorkin, and W D Willis
November 1977, British journal of pharmacology,
D G Ferrington, and L S Sorkin, and W D Willis
December 1980, Anesthesiology,
Copied contents to your clipboard!